The Routh-Hurwitz method for stability determination of linear differential-difference systems†

1981 ◽  
Vol 33 (5) ◽  
pp. 991-995 ◽  
Author(s):  
ARILD THOWSEN
1986 ◽  
Vol 9 (3) ◽  
pp. 531-540 ◽  
Author(s):  
Arthur D. Gorman

The Lagrange manifold (WKB) formalism enables the determination of the asymptotic series solution of linear differential equations modelling wave propagation in spatially inhomogeneous media at caustic (turning) points. Here the formalism is adapted to determine a class of asymptotic solutions at caustic points for those equations modelling wave propagation in media with both spatial and temporal inhomogeneities. The analogous Schrodinger equation is also considered.


Author(s):  
R. Datko

SynopsisA necessary and sufficient condition is developed for determination of the uniform stability of a class of non-autonomous linear differential-difference equations. This condition is the analogue of the Liapunov criterion for linear ordinary differential equations.


Author(s):  
A. L. Schwab ◽  
J. P. Meijaard

Abstract In the case of small elastic deformations in a flexible multi-body system, the periodic motion of the system can be modelled as a superposition of a small linear vibration and a non-linear rigid body motion. For the small deformations this analysis results in a set of linear differential equations with periodic coefficients. These equations give more insight in the vibration phenomena and are computationally more efficient than a direct non-linear analysis by numeric integration. The realization of the method in a program for flexible multibody systems is discussed which requires, besides the determination of the periodic rigid motion, the determination of the linearized equations of motion. The periodic solutions for the linear equations are determined with a harmonic balance method, while transient solutions are obtained by averaging. The stability of the periodic solution is considered. The method is applied to a pendulum with a circular motion of its support point and a slider-crank mechanism with flexible connecting rod. A comparison is made with previous non-linear results.


2021 ◽  
Vol 88 (5) ◽  
Author(s):  
Fan Kong ◽  
Pol D. Spanos

Abstract A statistical linearization approach is proposed for determining the response of the single-degree-of-freedom of the classical Bouc–Wen hysteretic system subjected to excitation both with harmonic and stochastic components. The method is based on representing the system response as a combination of a harmonic and of a zero-mean stochastic component. Specifically, first, the equation of motion is decomposed into a set of two coupled non-linear differential equations in terms of the unknown deterministic and stochastic response components. Next, the harmonic balance method and the statistical linearization method are used for the determination of the Fourier coefficients of the deterministic component, and the variance of the stochastic component, respectively. This yields a set of coupled algebraic equations which can be solved by any of the standard apropos algorithms. Pertinent numerical examples demonstrate the applicability, and reliability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document