Journal of Applied Mechanics
Latest Publications


TOTAL DOCUMENTS

15351
(FIVE YEARS 443)

H-INDEX

180
(FIVE YEARS 7)

Published By Asme International

0021-8936

2022 ◽  
pp. 1-36
Author(s):  
Xiaojie Ma ◽  
Luqi Liu ◽  
Zhong Zhang ◽  
Yueguang Wei

Abstract We study the bending stiffness of symmetrically bent circular multilayer van der Waals (vdW) material sheets, which corresponds to the non-isometric configuration in bulge tests. Frenkel sinusoidal function is employed to describe the periodic interlayer tractions due to the lattice structure nature and the bending stiffness of sheets is theoretically extracted via an energetic consideration. Our quantitative prediction shows good agreement with recent experimental results, where the bending stiffness of different types of sheets with the comparable thickness could follow a trend opposite to their Young's moduli. Based on our model, we propose that this trend may experience a transition as the thickness decreases. Apart from the apparent effects of Young's modulus and interlayer shear strength, the interlayer distance is also found to have an important impact on the bending stiffness. In addition, according to our analysis on the size effect, the bending stiffness of such symmetrically bent circular sheets can steadily own a relatively large value, in contrast to the cases of isometric deformations.


2022 ◽  
pp. 1-12
Author(s):  
Nastran Khodabandehloo ◽  
Kosar Mozaffari ◽  
Liping Liu ◽  
Pradeep Sharma

Abstract Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid electrolytes are being increasingly explored as an alternative due to their advantages in terms of increased stability, safety and potential applications in the context of flexible and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is significantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical framework to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes and also established a simple homogenization approach for the design of microstructures to enhance ionic conductivity of composite solid electrolytes. Guided by the insights from the theoretical framework, in this paper, we ex- amine specific microstructures that can potentially yield significant improvement in the effective ionic conductivity. We numerically implement our theory in the open source general purpose finite element package FEniCS to solve the governing equations and present numerical solutions and insights on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also propose an easily manufacturable microstructure that increases the ionic conductivity of the composite electrolyte by forty times, simply by the addition of dielectric columns parallel to the solid electrolyte phase.


2022 ◽  
pp. 1-20
Author(s):  
Naser Sharafkhani ◽  
Abbas Kouzani ◽  
Scott D. Adams ◽  
John M. Long ◽  
Julius O. Orwa

Abstract Insertion of flexible microprobes into the brain requires withstanding the compressive penetration force by the microprobes. To aid the insertion of the microprobes, most of the existing approaches employ pushing mechanisms to provide temporary stiffness increase for the microprobes to prevent buckling during insertion into the brain. However, increasing the microprobe stiffness may result in acute neural tissue damage during insertion. Moreover, any late or premature removal of the temporary stiffness after insertion may lead to further tissue damage due to brain micromotion, or inaccuracy in the microprobe positioning. In this study, a novel pneumatic-based insertion mechanism is proposed which simultaneously pulls and pushes a flexible microprobe towards the brain. As part of the brain penetration force in the proposed mechanism is supplied by the tensile force, the applied compressive force, which the microprobe must withstand during insertion, is lower compared to the existing approaches. Therefore, the microprobes with a critical buckling force less than the brain penetration force can be inserted into the brain without buckling. Since there is no need for temporary stiffness increment, the neural tissue damage during the microprobe insertion will be much lower compared to the existing insertion approaches. The pneumatic-based insertion mechanism is modelled analytically to investigate the effects of the microprobe configuration and the applied air pressure on the applied tensile and compressive forces to the microprobe. Next, finite element modelling is conducted, and its analysis results not only validate the analytical results but also confirm the efficiency of the mechanism.


2022 ◽  
pp. 1-18
Author(s):  
Jianzhong Zhao

Abstract Serpentine structures are of growing interest due to its unique mechanical and physical properties for applications in stretchable electronics, mechanical sensing, biomedical devices. Mechanics-guided, deterministic three-dimensional (3D) assembly provide routes to form remarkable 3D structures, which in turn significantly improve its potential for applications. Therefore, an accurate postbuckling analysis is essential to the complex 3D serpentine structures with arbitrary geometry/material parameters. Here, simple, analytical expressions are obtained for the displacement and effective rigidity of serpentine structures during postbuckling. By tuning geometry parameters, the amplitude of assembled 3D serpentine structures can span a very broad range from zero to that of a straight ribbon. The analytical model can be used in design, fabrication, and application of versatile 3D serpentine structures to ensure their compatibility with the ultra-low rigidity biological tissues. A hierarchical 3D serpentine structure with ultra-low rigidity is presented to demonstrate the application of the analytical model.


2022 ◽  
pp. 1-9
Author(s):  
Zhujiang Wang ◽  
Arun Srinivasa ◽  
J.N. Reddy ◽  
Adam Dubrowski

Abstract An automatic complex topology lightweight structure generation method (ACTLSGM) is presented to automatically generate 3D models of lightweight truss structures with a boundary surface of any shape. The core idea of the ACTLSGM is to use the PIMesh, a mesh generation algorithm developed by the authors, to generate node distributions inside the object representing the boundary surface of the target complex topology structures; raw lightweight truss structures are then generated based on the node distributions; the resulting lightweight truss structure is then created by adjusting the radius of the raw truss structures using an optimization algorithm based on finite element truss analysis. The finite element analysis-based optimization algorithm can ensure the resulting structures satisfy the design requirements on stress distributions or stiffness. Three demos, including a lightweight structure for a cantilever beam, a femur bone scaffold, and a 3D shoe sole model with adaptive stiffness that can be used to adjust foot pressure distributions for patients with diabetic foot problems, are generated to demonstrate the performance of the ACTLSGM. The ACTLSGM is not limited to generating 3D models of medical devices, but can be applied in many other fields, including 3D printing infills and other fields where customized lightweight structures are required.


2021 ◽  
pp. 1-40
Author(s):  
Zhonghui Yuan ◽  
Qinyi Huang ◽  
Xudong Liang ◽  
Zheng Zhong

Abstract Skin tissue is a complex heterogeneous material abundant with fibers. Various models capturing its anisotropy, nonlinearity, viscoelasticity have been developed. However, the existence of multiple fiber families and the differences among them have been largely ignored. Furthermore, inhomogeneous deformation over the thickness is observed in the skin under shear deformation, which the traditional skin models do not predict. In this paper, we propose that two fiber families with distinct mechanical and structural properties exist in the skin within the framework of a general structure tensor-based constitutive strain energy model. Our constitutive model considers distinct properties of fiber families and the consequent inhomogeneous deformation in the skin, showing good agreement with in vivo measurements of human face skin.


2021 ◽  
pp. 1-11
Author(s):  
Catalin Picu ◽  
Jacob Merson

Abstract This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.


2021 ◽  
pp. 1-32
Author(s):  
Xinpeng Tian ◽  
Mengkang Xu ◽  
Haiyang Zhou ◽  
Qian Deng ◽  
Qun Li ◽  
...  

Abstract Due to the stress concentration near crack tips, strong flexoelectric effect would be observed there, which might lead to new applications of flexoelectricity in material science and devices. However, different from the flexoelectric effect in cantilever beams or truncated pyramids, at the crack tip, multiple components of strain gradients with nonuniform distribution contribute to the flexoelectric effect, which makes the problem extremely complex. In this paper, with the consideration of both direct and converse flexoelectricity, the electromechanical coupling effect around the tip of a Mode III crack is studied analytically. Based on the Williams' expansion method, the displacement field, polarization field, strain gradient field along with the actual physical stresses field are solved. A path independent J-integral for Mode III cracks in flexoelectric solids is presented. Our results indicate that the existence of flexoelectricity leads to a decrease of both the J-integral and the out-of-plane displacement in Mode III cracks, which means that the flexoelectric effect around the tip of Mode III cracks enhances the local strength of materials.


2021 ◽  
pp. 1-18
Author(s):  
Zhongyuan Wo ◽  
Evgueni Filipov

Abstract Thin-walled corrugated tubes that have a bending multi-stability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross-sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross-section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross-sections, while wider cross-sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.


2021 ◽  
pp. 1-22
Author(s):  
Feng Liu ◽  
Zhi-chun Yang ◽  
Pengtao Shi ◽  
Yizhou Shen ◽  
Liyun Cao ◽  
...  

Abstract Great progress has been made in modulating flexural waves by elastic metasurfaces. Most of the proposed elastic metasurfaces suffer from chromatic aberration, limited in a narrow bandwidth around the designed frequency. In this paper, overcoming the chromatic aberration, an ultra-broadband achromatic meta-slab (UAM) with subunits of gradient thickness is proposed to realize the refraction angle unchanged with the incident frequency. Based on the phase compensation principle, wavelength-dependent phase shifts for the UAM that realize achromaticity are obtained. In order to verify the effectiveness of the theoretical design, the transmitted wavefields are solved according to the phased array theory, and the results correspond with those obtained by the finite element (FE) simulations and experiments, which show that the refraction angle is unchanged for incident frequencies from 2 kHz to 8 kHz. Besides, the UAM is extended into a periodic meta-slab, and multifrequency achromaticity is realized. Our designed meta-slabs overcome the chromatic aberration by simple configurations, which have significance in the applications of vibration control, vibrational energy harvesting, and health monitoring.


Sign in / Sign up

Export Citation Format

Share Document