Input- and output-decoupling structural zeros of linear systems described by Rosenbrock's polynomial matrices

1986 ◽  
Vol 44 (6) ◽  
pp. 1641-1659 ◽  
Author(s):  
BRUNO MAIONE ◽  
BIAGIO TURCHIANO
2011 ◽  
Vol 91 (5) ◽  
pp. 1115-1122 ◽  
Author(s):  
Márcio J. Lacerda ◽  
Ricardo C.L.F. Oliveira ◽  
Pedro L.D. Peres

Author(s):  
O F Lutfy ◽  
Mohd S B Noor ◽  
M H Marhaban ◽  
K A Abbas

This paper presents a genetically trained PID (proportional-integral-derivative)-like ANFIS (adaptive neuro-fuzzy inference system) acting as a feedback controller to control non-linear systems. Three important issues are addressed in this paper, which are, first, the evaluation of the ANFIS as a PID-like controller; second, the utilization of the GA (genetic algorithm) alone to train the ANFIS controller, instead of the hybrid learning methods that are widely used in the literature; and, third, the determination of the input and output scaling factors for this controller by the GA. The GA, with real-coding operators, is used to adjust all of the ANFIS parameters, which include the input and output scaling factors, the centres and widths of the input membership functions (MFs), and the consequent parameters. To show the effectiveness of this controller and its learning method, several non-linear plants, including the CSTR (continuous stirred tank reactor), have been selected to be controlled by this controller through simulation. Moreover, this controller's robustness to output disturbances has also been tested and the results clearly indicated the remarkable performance of this controller and its learning algorithm. In addition, the result of comparing the performance of this controller with a genetically tuned classical PID controller has shown the superiority of the PID-like ANFIS controller.


2020 ◽  
Vol 3 (2) ◽  
pp. 133-147
Author(s):  
Lathifatul Aulia ◽  
Widowati Widowati ◽  
R. Heru Tjahjana ◽  
Sutrisno Sutrisno

Discrete event systems, also known as DES, are class of system that can be applied to systems having an event that occurred instantaneously and may change the state. It can also be said that a discrete event system occurs under certain conditions for a certain period because of the network that describes the process flow or sequence of events. Discrete event systems belong to class of nonlinear systems in classical algebra. Based on this situation, it is necessary to do some treatments, one of which is linearization process. In the other hand, a Max-Plus Linear system is known as a system that produces linear models. This system is a development of a discrete event system that contains synchronization when it is modeled in Max-Plus Algebra. This paper discusses the production system model in manufacturing industries where the model pays the attention into the process flow or sequence of events at each time step. In particular, Model Predictive Control (MPC) is a popular control design method used in many fields including manufacturing systems. MPC for Max-Plus-Linear Systems is used here as the approach that can be used to model the optimal input and output sequences of discrete event systems. The main advantage of MPC is its ability to provide certain constraints on the input and output control signals. While deciding the optimal control value, a cost criterion is minimized by determining the optimal time in the production system that modeled as a Max-Plus Linear (MPL) system. A numerical experiment is performed in the end of this paper for tracking control purposes of a production system. The results were good that is the controlled system showed a good performance.


Sign in / Sign up

Export Citation Format

Share Document