Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds

2015 ◽  
Vol 53 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Ki-Jung Kim ◽  
Jong-Boo Han ◽  
Hyung-Suk Han ◽  
Seok-Jo Yang
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Liu ◽  
Wenhua Guo

This paper presents a framework for the linear random vibration analysis of the coupled three-dimensional (3D) maglev vehicle-bridge system. Except for assembling the equation of motion of vehicle only via the principle of virtual work, the fully computerized approach is further expanded to assemble the governing equation of fluctuating current via the equilibrium relation. A state-space equation couples the equation of motion of the vehicle and the governing equation of fluctuating current. The equation of motion of a real three-span space continuous girder bridge is established by using finite element methods. A separated iteration method based on the precise integration method and the Newmark method is introduced to solve the state-space equation for the maglev vehicle and the equation of motion for the bridge. Moreover, a new scheme to application of the pseudoexcitation method (PEM) in random vibration analysis is proposed to maximize the computational efficiency of the random vibration analysis of the maglev vehicle-bridge system. Finally, the numerical simulation demonstrates that the proposed framework can efficiently obtain the mean value, root mean square (RMS), standard deviation (SD), and power spectral density (PSD) of dynamic response for the coupled 3D maglev vehicle-bridge system.


Sign in / Sign up

Export Citation Format

Share Document