soil structure interaction
Recently Published Documents


TOTAL DOCUMENTS

2502
(FIVE YEARS 591)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Davide Forcellini ◽  
Daniele Mina ◽  
Hassan Karampour

Subsea high pressure/high temperature (HP/HT) pipelines may be significantly affected by the effects of soil structure interaction (SSI) when subjected to earthquakes. Numerical simulations are herein applied to assess the role of soil deformability on the seismic vulnerability of an unburied pipeline. Overcoming most of the contributions existing in the literature, this paper proposes a comprehensive 3D model of the system (soil + pipeline) by performing OpenSees that allows the representation of non-linear mechanisms of the soil and may realistically assess the induced damage caused by the mutual interaction of buckling and seismic loads. Analytical fragility curves are herein derived to evaluate the role of soil structure interaction in the assessment of the vulnerability of a benchmark HP/HT unburied subsea pipeline. The probability of exceeding selected limit states was based on the definition of credited failure criteria.


2022 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Harry Far

Abstract As the population grows and land prices rise, high-rise buildings are becoming more and more common and popular in urban cities. Traditional high-rise building design method generally assumes the structure is fixed at the base, because the influence of soil-structure interaction is considered to be beneficial to the response of structures under the earthquake excitation. However, recent earthquakes and studies indicated that SSI may exert detrimental effects on commonly used structural systems. In this study, a numerical soil-structure model is established in Abaqus software to explore the impacts of SSI on high-rise frame-core tube structures. The seismic response of frame-core tube structures with various structural heights, height-width ratios, foundation types and soil types is studied. The numerical simulation results including maximum lateral deflections, foundation rocking, inter-storey drifts and base shears of rigid and flexible base buildings are discussed and compared. The results reveal the lateral displacement and inter-storey drifts of the superstructure can be amplified when SSI is taking into account, while the base shears are not necessarily reduced. Increasing the stiffness of the foundation and the subsoil can generally increase the seismic demand of structures. It has been concluded that it is neither safe nor economical to consider only the beneficial effects of SSI or to ignore them in structural design practice.


Author(s):  
Kamale G ◽  
Satheeshkumar K R P

Soil-structure interaction(SSI) analysis is the study of the dynamic response of a structure as influenced by the interaction with the surrounding soil. The SSI response is sensitive to the characteristics of the soil, structures, and ground motion, as well as the depth of embedment. The concept of soil-structure interaction was introduced , and the research methods were discussed. This report presents a synthetic of the body of knowledge contained in SSI literature, which has been distilled into a concise narrative and harmonized under a consistent set of variables and units. Specific techniques are described by which SSI phenomena can be simulated in engineering practice, and recommendations for modeling seismic soil-structure interaction effects on building structures are provided. An attempt was made to summarize the all terms in this area of study.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Rabindra Adhikari ◽  
Rajesh Rupakhety ◽  
Prajwal Giri ◽  
Rewati Baruwal ◽  
Ramesh Subedi ◽  
...  

Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type of construction is the most dominant structural form adopted to construct residential buildings in urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions generally follow the guidelines recommended by the Nepal Building Code, especially the mandatory rules of thumb. Although low-rise buildings have brick infills and are randomly constructed, infill walls and soil–structure interaction effects are generally neglected in the design and assessment of such structures. To this end, bare frame models that are used to represent such structures are questionable, especially when seismic vulnerability analysis is concerned. To fulfil this gap, we performed seismic vulnerability analysis of low-rise residential RC buildings considering infill walls and soil–structure interaction effects. Considering four analysis cases, we outline comparative seismic vulnerability for various analysis cases in terms of fragility functions. The sum of observations highlights that the effects of infills, and soil–structure interaction are damage state sensitive for low-rise RC buildings. Meanwhile, the design considerations will be significantly affected since some performance parameters are more sensitive than the overall fragility. We also observed that the analytical fragility models fundamentally overestimate the actual seismic fragility in the case of low-rise RC buildings.


Sign in / Sign up

Export Citation Format

Share Document