Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization

Optimization ◽  
2005 ◽  
Vol 54 (3) ◽  
pp. 305-325 ◽  
Author(s):  
Marina Andretta ◽  
Ernesto G. Birgin ◽  
José Mario Martínez
Author(s):  
Morteza Kimiaei

AbstractThis paper discusses an active set trust-region algorithm for bound-constrained optimization problems. A sufficient descent condition is used as a computational measure to identify whether the function value is reduced or not. To get our complexity result, a critical measure is used which is computationally better than the other known critical measures. Under the positive definiteness of approximated Hessian matrices restricted to the subspace of non-active variables, it will be shown that unlimited zigzagging cannot occur. It is shown that our algorithm is competitive in comparison with the state-of-the-art solvers for solving an ill-conditioned bound-constrained least-squares problem.


2011 ◽  
Vol 141 ◽  
pp. 92-97
Author(s):  
Miao Hu ◽  
Tai Yong Wang ◽  
Bo Geng ◽  
Qi Chen Wang ◽  
Dian Peng Li

Nonlinear least square is one of the unconstrained optimization problems. In order to solve the least square trust region sub-problem, a genetic algorithm (GA) of global convergence was applied, and the premature convergence of genetic algorithms was also overcome through optimizing the search range of GA with trust region method (TRM), and the convergence rate of genetic algorithm was increased by the randomness of the genetic search. Finally, an example of banana function was established to verify the GA, and the results show the practicability and precision of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document