filter technique
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 45)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 17 (01) ◽  
pp. P01002
Author(s):  
L. Polson ◽  
L. Kurchaninov ◽  
M. Lefebvre

Abstract The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a difficult process. The beam intensity of the Large Hadron Collider will be significantly increased during the Phase-II long shut-down of 2025–2027. Signal processing techniques that are used to extract the energy of detected particles in the ATLAS detector will suffer a significant loss in performance under these conditions. This paper compares the presently used optimal filter technique to convolutional neural networks for energy reconstruction in the ATLAS liquid argon hadronic end cap calorimeter. In particular, it is shown that convolutional neural networks trained with an appropriately tuned and novel loss function are able to outperform the optimal filter technique.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Ryo Kurihara ◽  
Aitaro Kato ◽  
Sumito Kurata ◽  
Hiromichi Nagao

AbstractThe matched filter technique is often used to detect microearthquakes such as deep low-frequency (DLF) earthquakes. It compares correlation coefficients (CC) between waveforms of template earthquakes and the observed data. Conventionally, the sum of CC at multiple seismic stations is used as an index to detect the DLF earthquakes. A major disadvantage of the conventional method is drastically reduced detection accuracy when there are too few seismic stations. The new matched filter method proposed in this study can accurately detect microearthquakes using only a single station. It adopts mutual information (MI) in addition to CC to measure the similarity between the template and target waveforms. The method uses the product of MI and CC (MICC) as an index to detect DLF earthquakes. This index shows a distinct peak corresponding to an earthquake signal in a synthetic data set consisting of artificial noise and the waveform of a DLF earthquake. Application of this single-station method to field observations of Kirishima volcano, one of the most active volcanoes in Japan, detected a total of 354 events from the data in December 2010, whereas the catalog of the Japan Meteorological Agency shows only two. Of the detected events, 314 (89%) are likely DLF earthquakes and other events may be false detections. Most of the false detections correspond to surface-wave arrivals from teleseismic events. The catalog of DLF earthquakes constructed here shows similar temporal behavior to that found by the conventional matched filter method using the sum of the CC of the six stations near the volcano. These results suggest that the proposed method can greatly contribute to the accurate cataloging of DLF earthquakes using only a single seismic station. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lingyun He ◽  
Peng Wang ◽  
Detong Zhu

An adaptive projected affine scaling algorithm of cubic regularization method using a filter technique for solving box constrained optimization without derivatives is put forward in the passage. The affine scaling interior-point cubic model is based on the quadratic probabilistic interpolation approach on the objective function. The new iterations are obtained by the solutions of the projected adaptive cubic regularization algorithm with filter technique. We prove the convergence of the proposed algorithm under some assumptions. Finally, experiments results showed that the presented algorithm is effective in detail.


2021 ◽  
Author(s):  
Ryo Kurihara ◽  
Aitaro Kato ◽  
Sumito Kurata ◽  
Hiromichi Nagao

Abstract Matched filter technique is often used to detect microearthquakes such as deep low-frequency (DLF) earthquakes. It compares correlation coefficients (CC) between waveforms of template earthquakes and the observed data. Conventionally, the sum of CC at multiple seismic stations is used as an index to detect the DLF earthquakes. A major disadvantage of conventional method is drastically reduced detection accuracy when there are too few seismic stations. A new matched filter method proposed in this study can accurately detect microearthquakes using only a single station. It adopts mutual information (MI) in addition to CC to measure the similarity between the template and target waveforms. The method uses the product of MI and CC (MICC) as an index to detect DLF earthquakes. This index shows a distinct peak corresponding to an earthquake signal in a synthetic data set consisting of artificial noise and the waveform of a DLF earthquake. Application of this single-station method to field observations of Kirishima volcano, one of the most active volcanoes in Japan, detected a total of 354 DLF earthquakes from the data in December 2010, whereas the catalog of the Japan Meteorological Agency shows only two. The catalog of DLF earthquakes constructed here shows similar temporal behavior to that found by conventional matched filter method using the sum of the CC of the six stations near the volcano. The proposed method successfully identified approximately 80% of the earthquakes in the conventionally constructed catalogs. These results suggest that the proposed method can greatly contribute to the accurate cataloging of DLF earthquakes using only a single seismic station.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohsen Ahmadi ◽  
Abbas Sharifi ◽  
Shayan Hassantabar ◽  
Saman Enayati

Tumor segmentation in brain MRI images is a noted process that can make the tumor easier to diagnose and lead to effective radiotherapy planning. Providing and building intelligent medical systems can be considered as an aid for physicians. In many cases, the presented methods’ reliability is at a high level, and such systems are used directly. In recent decades, several methods of segmentation of various images, such as MRI, CT, and PET, have been proposed for brain tumors. Advanced brain tumor segmentation has been a challenging issue in the scientific community. The reason for this is the existence of various tumor dimensions with disproportionate boundaries in medical imaging. This research provides an optimized MRI segmentation method to diagnose tumors. It first offers a preprocessing approach to reduce noise with a new method called Quantum Matched-Filter Technique (QMFT). Then, the deep spiking neural network (DSNN) is implemented for segmentation using the conditional random field structure. However, a new algorithm called the Quantum Artificial Immune System (QAIS) is used in its SoftMax layer due to its slowness and nonsegmentation and the identification of suitable features for selection and extraction. The proposed approach, called QAIS-DSNN, has a high ability to segment and distinguish brain tumors from MRI images. The simulation results using the BraTS2018 dataset show that the accuracy of the proposed approach is 98.21%, average error-squared rate is 0.006, signal-to-noise ratio is 97.79 dB, and lesion structure criteria including the tumor nucleus are 80.15%. The improved tumor is 74.50%, and the entire tumor is 91.92%, which shows a functional advantage over similar previous methods. Also, the execution time of this method is 2.58 seconds.


Sign in / Sign up

Export Citation Format

Share Document