search range
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 71)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Krisma Asmoro ◽  
I Nyoman Apraz Ramatryana ◽  
Soo Young Shin

Reconfigurable intelligent surface (RIS) as a supportive technology for aiding downlink non-orthogonal multiple access (NOMA) can enhance the bit error rate (BER) performance. In this paper, a novel BER-aware reflecting elements allocation (REA) on an RIS is proposed to maintain the BER order among paired RIS-NOMA users. The RIS REA is useful for minimizing the average user BER, ompared with a system that allocates the same number of elements to all users. Additionally, the Ricean fading is considered instead of Rayleigh fading as it is more practical and general. Furthermore,an REA optimization objective function for equalizing the user BER is proposed. In order to solve the problem, a modified exhaustive search is proposed to reduce complexity. The distribution of the objective function is observed first; subsequently, the exhaustive search range is determined. Both the analytical and simulation results show that the proposed algorithm can minimize the average user BER.


2022 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Xing Mou ◽  
Zhiqiang Shen ◽  
Honghao Liu ◽  
Hui Xv ◽  
Xianzhao Xia ◽  
...  

In tape placement process, the laying angle and laying sequence of laminates have proven their significant effects on the mechanical properties of carbon fibre reinforced composite material, specifically, laminates. In order to optimise these process parameters, an optimisation algorithm is developed based on the principles of genetic algorithms for improving the precision of traditional genetic algorithms and resolving the premature phenomenon in the optimisation process. Taking multi-layer symmetrically laid carbon fibre laminates as the research object, this algorithm adopts binary coding to conduct the optimisation of process parameters and mechanical analysis with the laying angle as the design variable and the strength ratio R as the response variable. A case study was conducted and its results were validated by the finite element analyses. The results show that the stresses before and after optimisation are 116.0 MPa and 100.9 MPa, respectively, with a decrease of strength ratio by 13.02%. The results comparison indicates that, in the iterative process, the search range is reduced by determining the code and location of important genes, thereby reducing the computational workload by 21.03% in terms of time consumed. Through multiple calculations, it validates that “gene mutation” is an indispensable part of the genetic algorithm in the iterative process.


2022 ◽  
Author(s):  
Krisma Asmoro ◽  
I Nyoman Apraz Ramatryana ◽  
Soo Young Shin

Reconfigurable intelligent surface (RIS) as a supportive technology for aiding downlink non-orthogonal multiple access (NOMA) can enhance the bit error rate (BER) performance. In this paper, a novel BER-aware reflecting elements allocation (REA) on an RIS is proposed to maintain the BER order among paired RIS-NOMA users. The RIS REA is useful for minimizing the average user BER, ompared with a system that allocates the same number of elements to all users. Additionally, the Ricean fading is considered instead of Rayleigh fading as it is more practical and general. Furthermore,an REA optimization objective function for equalizing the user BER is proposed. In order to solve the problem, a modified exhaustive search is proposed to reduce complexity. The distribution of the objective function is observed first; subsequently, the exhaustive search range is determined. Both the analytical and simulation results show that the proposed algorithm can minimize the average user BER.


2022 ◽  
Vol 12 (1) ◽  
pp. 529
Author(s):  
Bao Tong ◽  
Jianwei Wang ◽  
Xue Wang ◽  
Feihao Zhou ◽  
Xinhua Mao ◽  
...  

The optimal delivery route problem for truck–drone delivery is defined as a traveling salesman problem with drone (TSP-D), which has been studied in a wide range of previous literature. However, most of the existing studies ignore truck waiting time at rendezvous points. To fill this gap, this paper builds a mixed integer nonlinear programming model subject to time constraints and route constraints, aiming to minimize the total delivery time. Since the TSP-D is non-deterministic polynomial-time hard (NP-hard), the proposed model is solved by the variable neighborhood tabu search algorithm, where the neighborhood structure is changed by point exchange and link exchange to expand the tabu search range. A delivery network with 1 warehouse and 23 customer points are employed as a case study to verify the effectiveness of the model and algorithm. The 23 customer points are visited by three truck–drones. The results indicate that truck–drone delivery can effectively reduce the total delivery time by 20.1% compared with traditional pure-truck delivery. Sensitivity analysis of different parameters shows that increasing the number of truck–drones can effectively save the total delivery time, but gradually reduce the marginal benefits. Only increasing either the truck speed or drone speed can reduce the total delivery time, but not to the greatest extent. Bilateral increase of truck speed and drone speed can minimize the delivery time. It can clearly be seen that the proposed method can effectively optimize the truck–drone delivery route and improve the delivery efficiency.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Ning Li ◽  
Shuai Wan

To improve the video quality, aiming at the problems of low peak signal-to-noise ratio, poor visual effect, and low bit rate of traditional methods, this paper proposes a fast compensation algorithm for the interframe motion of multimedia video based on Manhattan distance. The absolute median difference based on wavelet transform is used to estimate the multimedia video noise. According to the Gaussian noise variance estimation result, the active noise mixing forensics algorithm is used to preprocess the original video for noise mixing, and the fuzzy C-means clustering method is used to smoothly process the noisy multimedia video and obtain significant information from the multimedia video. The block-based motion idea is to divide each frame of the video sequence into nonoverlapping macroblocks, find the best position of the block corresponding to the current frame in the reference frame according to the specific search range and specific rules, and obtain the relative Manhattan distance between the current frame and the background of multimedia video using the Manhattan distance calculation formula. Then, the motion between the multimedia video frames is compensated. The experimental results show that the algorithm in this paper has a high peak signal-to-noise ratio and a high bit rate, which effectively improves the visual effect of the video.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Guijuan Wang ◽  
Xinheng Wang ◽  
Zuoxun Wang ◽  
Chunrui Ma ◽  
Zengxu Song

Accurate power load forecasting has an important impact on power systems. In order to improve the load forecasting accuracy, a new load forecasting model, VMD–CISSA–LSSVM, is proposed. The model combines the variational modal decomposition (VMD) data preprocessing method, the sparrow search algorithm (SSA) and the least squares support vector machine (LSSVM) model. A multi-strategy improved chaotic sparrow search algorithm (CISSA) is proposed to address the shortcomings of the SSA algorithm, which is prone to local optima and a slow convergence. The initial population is generated using an improved tent chaotic mapping to enhance the quality of the initial individuals and population diversity. Second, a random following strategy is used to optimize the position update process of the followers in the sparrow search algorithm, balancing the local exploitation performance and global search capability of the algorithm. Finally, the Levy flight strategy is used to expand the search range and local search capability. The results of the benchmark test function show that the CISSA algorithm has a better search accuracy and convergence performance. The volatility of the original load sequence is reduced by using VMD. The optimal parameters of the LSSVM are optimized by the CISSA. The simulation test results demonstrate that the VMD–CISSA–LSSVM model has the highest prediction accuracy and stabler prediction results.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Shaoqiang Yan ◽  
Ping Yang ◽  
Donglin Zhu ◽  
Wanli Zheng ◽  
Fengxuan Wu

This paper solves the shortcomings of sparrow search algorithm in poor utilization to the current individual and lack of effective search, improves its search performance, achieves good results on 23 basic benchmark functions and CEC 2017, and effectively improves the problem that the algorithm falls into local optimal solution and has low search accuracy. This paper proposes an improved sparrow search algorithm based on iterative local search (ISSA). In the global search phase of the followers, the variable helix factor is introduced, which makes full use of the individual’s opposite solution about the origin, reduces the number of individuals beyond the boundary, and ensures the algorithm has a detailed and flexible search ability. In the local search phase of the followers, an improved iterative local search strategy is adopted to increase the search accuracy and prevent the omission of the optimal solution. By adding the dimension by dimension lens learning strategy to scouters, the search range is more flexible and helps jump out of the local optimal solution by changing the focusing ability of the lens and the dynamic boundary of each dimension. Finally, the boundary control is improved to effectively utilize the individuals beyond the boundary while retaining the randomness of the individuals. The ISSA is compared with PSO, SCA, GWO, WOA, MWOA, SSA, BSSA, CSSA, and LSSA on 23 basic functions to verify the optimization performance of the algorithm. In addition, in order to further verify the optimization performance of the algorithm when the optimal solution is not 0, the above algorithms are compared in CEC 2017 test function. The simulation results show that the ISSA has good universality. Finally, this paper applies ISSA to PID parameter tuning and robot path planning, and the results show that the algorithm has good practicability and effect.


Author(s):  
Yaolin Tian ◽  
Weize Gao ◽  
Xuxing Liu ◽  
Shanxiong Chen ◽  
Bofeng Mo

The rejoining of oracle bone rubbings is a fundamental topic for oracle research. However, it is a tough task to reassemble severely broken oracle bone rubbings because of detail loss in manual labeling, the great time consumption of rejoining, and the low accuracy of results. To overcome the challenges, we introduce a novel CFDA&CAP algorithm that consists of the Curve Fitting Degree Analysis (CFDA) algorithm and the Correlation Analysis of Pearson (CAP) algorithm. First, the orthogonalization system is constructed to extract local features based on the curve features analysis. Second, the global feature descriptor is depicted by using coordinate points sequences. Third, we screen candidate curves based on the features as well as the CFDA algorithm, so the search range of the candidates is narrowed down. Finally, image recommendation libraries for target curves are generated by adopting the CAP algorithm, and the rank for each target matching curve generates simultaneously for result evaluation. With experiments, the proposed method shows a good effect in rejoining oracle bone rubbings automatically: (1) it improves the average accuracy rate of curve matching up to 84%, and (2) for a low-resource task, the accuracy of our method has 25% higher accuracy than that of other methods.


2021 ◽  
Author(s):  
Lan Zang ◽  
Kun Zhang ◽  
Chuan Tian ◽  
Chong Shen ◽  
Bhatti Uzair Aslam ◽  
...  

Abstract In order to solve the problems of low accuracy and unstable system performance existing in binocular vision alone, this paper proposes a threedimensional space recognition and positioning algorithm based on binocular stereo vision and deep learning algorithms. First, a binocular camera for Zhang Zhengyou calibrated by several adjustments, calibration error will eventually set at 0.10pixels best, select and SAD in block matching algorithm in the algorithm, the matching point of the search range reduction, mitigation data for subsequent experiments burden. Then input the three-dimensional spatial data calculated by using the binocular ”parallax” principle into the Faster R-CNN model for data training, extract and classify the target features, and finally realize real-time detection of the target object and its position coordinate information. The analysis of experimental data shows that when the best calibration error is selected and the number of data training is sufficient, the algorithm in this paper can effectively improve the quality of target detection. The positioning accuracy and target recognition rate are increased by about 3%-5%, and it can achieve faster fps.


2021 ◽  
Author(s):  
Y. Curtis Wang ◽  
Nirvik Sinha ◽  
Johann Rudi ◽  
James Velasco ◽  
Gideon Idumah ◽  
...  

Experimental data-based parameter search for Hodgkin-Huxley-style (HH) neuron models is a major challenge for neuroscientists and neuroengineers. Current search strategies are often computationally expensive, are slow to converge, have difficulty handling nonlinearities or multimodalities in the objective function, or require good initial parameter guesses. Most important, many existing approaches lack quantification of uncertainties in parameter estimates even though such uncertainties are of immense biological significance. We propose a novel method for parameter inference and uncertainty quantification in a Bayesian framework using the Markov chain Monte Carlo (MCMC) approach. This approach incorporates prior knowledge about model parameters (as probability distributions) and aims to map the prior to a posterior distribution of parameters informed by both the model and the data. Furthermore, using the adaptive parallel tempering strategy for MCMC, we tackle the highly nonlinear, noisy, and multimodal loss function, which depends on the HH neuron model. We tested the robustness of our approach using the voltage trace data generated from a 9-parameter HH model using five levels of injected currents (0.0, 0.1, 0.2, 0.3, and 0.4 nA). Each test consisted of running the ground truth with its respective currents to estimate the model parameters. To simulate the condition for fitting a frequency-current (F-I) curve, we also introduced an aggregate objective that runs MCMC against all five levels simultaneously. We found that MCMC was able to produce many solutions with acceptable loss values (e.g., for 0.0 nA, 889 solutions were within 0.5% of the best solution and 1,595 solutions within 1% of the best solution). Thus, an adaptive parallel tempering MCMC search provides a "landscape" of the possible parameter sets with acceptable loss values in a tractable manner. Our approach is able to obtain an intelligently sampled global view of the solution distributions within a search range in a single computation. Additionally, the advantage of uncertainty quantification allows for exploration of further solution spaces, which can serve to better inform future experiments.


Sign in / Sign up

Export Citation Format

Share Document