A partially inexact ADMM with o(1/n) asymptotic convergence rate, 𝒪(1/n) complexity, and immediate relative error tolerance

Optimization ◽  
2020 ◽  
pp. 1-20
Author(s):  
B. Fux Svaiter
2000 ◽  
Vol 12 (12) ◽  
pp. 2881-2907 ◽  
Author(s):  
Jinwen Ma ◽  
Lei Xu ◽  
Michael I. Jordan

It is well known that the convergence rate of the expectation-maximization (EM) algorithm can be faster than those of convention first-order iterative algorithms when the overlap in the given mixture is small. But this argument has not been mathematically proved yet. This article studies this problem asymptotically in the setting of gaussian mixtures under the theoretical framework of Xu and Jordan (1996). It has been proved that the asymptotic convergence rate of the EM algorithm for gaussian mixtures locally around the true solution Θ* is o(e0.5−ε(Θ*)), where ε > 0 is an arbitrarily small number, o(x) means that it is a higher-order infinitesimal as x → 0, and e(Θ*) is a measure of the average overlap of gaussians in the mixture. In other words, the large sample local convergence rate for the EM algorithm tends to be asymptotically superlinear when e(Θ*) tends to zero.


2011 ◽  
Vol 23 (8) ◽  
pp. 2140-2168 ◽  
Author(s):  
Yan Yang ◽  
Jinwen Ma

Mixture of experts (ME) is a modular neural network architecture for supervised classification. The double-loop expectation-maximization (EM) algorithm has been developed for learning the parameters of the ME architecture, and the iteratively reweighted least squares (IRLS) algorithm and the Newton-Raphson algorithm are two popular schemes for learning the parameters in the inner loop or gating network. In this letter, we investigate asymptotic convergence properties of the EM algorithm for ME using either the IRLS or Newton-Raphson approach. With the help of an overlap measure for the ME model, we obtain an upper bound of the asymptotic convergence rate of the EM algorithm in each case. Moreover, we find that for the Newton approach as a specific Newton-Raphson approach to learning the parameters in the inner loop, the upper bound of asymptotic convergence rate of the EM algorithm locally around the true solution Θ* is [Formula: see text], where ϵ>0 is an arbitrarily small number, o(x) means that it is a higher-order infinitesimal as x → 0, and e(Θ*) is a measure of the average overlap of the ME model. That is, as the average overlap of the true ME model with large sample tends to zero, the EM algorithm with the Newton approach to learning the parameters in the inner loop tends to be asymptotically superlinear. Finally, we substantiate our theoretical results by simulation experiments.


2019 ◽  
Vol 25 ◽  
pp. 57
Author(s):  
Benar Fux Svaiter

Douglas-Rachford method is a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Each of its iterations requires the sequential solution of two proximal subproblems. The aim of this work is to present a fully inexact version of Douglas-Rachford method wherein both proximal subproblems are solved approximately within a relative error tolerance. We also present a semi-inexact variant in which the first subproblem is solved exactly and the second one inexactly. We prove that both methods generate sequences weakly convergent to the solution of the underlying inclusion problem, if any.


Sign in / Sign up

Export Citation Format

Share Document