asymptotic convergence
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 56)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 26 (4) ◽  
pp. 684-695
Author(s):  
Jöel Chaskalovic ◽  
Franck Assous

We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Yakui Huang ◽  
Yu-Hong Dai ◽  
Xin-Wei Liu ◽  
Hongchao Zhang

2021 ◽  
Vol 31 (4) ◽  
pp. 1-26
Author(s):  
Jungmin Han ◽  
Seong-Hee Kim ◽  
Chuljin Park

Penalty function with memory (PFM) in Park and Kim [2015] is proposed for discrete optimization via simulation problems with multiple stochastic constraints where performance measures of both an objective and constraints can be estimated only by stochastic simulation. The original PFM is shown to perform well, finding a true best feasible solution with a higher probability than other competitors even when constraints are tight or near-tight. However, PFM applies simple budget allocation rules (e.g., assigning an equal number of additional observations) to solutions sampled at each search iteration and uses a rather complicated penalty sequence with several user-specified parameters. In this article, we propose an improved version of PFM, namely IPFM, which can combine the PFM with any simulation budget allocation procedure that satisfies some conditions within a general DOvS framework. We present a version of a simulation budget allocation procedure useful for IPFM and introduce a new penalty sequence, namely PS 2 + , which is simpler than the original penalty sequence yet holds convergence properties within IPFM with better finite-sample performances. Asymptotic convergence properties of IPFM with PS 2 + are proved. Our numerical results show that the proposed method greatly improves both efficiency and accuracy compared to the original PFM.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Soumia Manaa ◽  
Salah Boulaaras ◽  
Hamid Benseridi ◽  
Mourad Dilmi ◽  
Sultan Alodhaibi

In this paper, we consider the Brinkman equation in the three-dimensional thin domain ℚ ε ⊂ ℝ 3 . The purpose of this paper is to evaluate the asymptotic convergence of a fluid flow in a stationary regime. Firstly, we expose the variational formulation of the posed problem. Then, we presented the problem in transpose form and prove different inequalities for the solution u ε , p ε independently of the parameter ε . Finally, these estimates allow us to have the limit problem and the Reynolds equation and establish the uniqueness of the solution.


Sign in / Sign up

Export Citation Format

Share Document