Estimating the Order of Continuous Phase-type Distributions and Markov-Modulated Poisson Processes∗

1997 ◽  
Vol 13 (3) ◽  
pp. 417-433 ◽  
Author(s):  
Tobias Rydén
1996 ◽  
Vol 33 (3) ◽  
pp. 640-653 ◽  
Author(s):  
Tobias Rydén

An aggregated Markov chain is a Markov chain for which some states cannot be distinguished from each other by the observer. In this paper we consider the identifiability problem for such processes in continuous time, i.e. the problem of determining whether two parameters induce identical laws for the observable process or not. We also study the order of a continuous-time aggregated Markov chain, which is the minimum number of states needed to represent it. In particular, we give a lower bound on the order. As a by-product, we obtain results of this kind also for Markov-modulated Poisson processes, i.e. doubly stochastic Poisson processes whose intensities are directed by continuous-time Markov chains, and phase-type distributions, which are hitting times in finite-state Markov chains.


2021 ◽  
Vol 58 (4) ◽  
pp. 880-889
Author(s):  
Qi-Ming He

AbstractWe consider a class of phase-type distributions (PH-distributions), to be called the MMPP class of PH-distributions, and find bounds of their mean and squared coefficient of variation (SCV). As an application, we have shown that the SCV of the event-stationary inter-event time for Markov modulated Poisson processes (MMPPs) is greater than or equal to unity, which answers an open problem for MMPPs. The results are useful for selecting proper PH-distributions and counting processes in stochastic modeling.


1996 ◽  
Vol 33 (03) ◽  
pp. 640-653 ◽  
Author(s):  
Tobias Rydén

An aggregated Markov chain is a Markov chain for which some states cannot be distinguished from each other by the observer. In this paper we consider the identifiability problem for such processes in continuous time, i.e. the problem of determining whether two parameters induce identical laws for the observable process or not. We also study the order of a continuous-time aggregated Markov chain, which is the minimum number of states needed to represent it. In particular, we give a lower bound on the order. As a by-product, we obtain results of this kind also for Markov-modulated Poisson processes, i.e. doubly stochastic Poisson processes whose intensities are directed by continuous-time Markov chains, and phase-type distributions, which are hitting times in finite-state Markov chains.


1992 ◽  
Vol 24 (01) ◽  
pp. 223-225 ◽  
Author(s):  
M. Manoharan ◽  
Harshinder Singh ◽  
Neeraj Misra

In this paper, we consider the life distribution H(t) of a device subject to shocks governed by a finite mixture of homogeneous Poisson processes. It will be shown that if (pk ), the probabilities that the device fails on the kth shock, has a discrete phase-type (DPH) distribution, then H(t) is continuous phase-type (CPH). The relationship between the mean values of (pk ) and H(t) is established.


1979 ◽  
Vol 16 (4) ◽  
pp. 764-779 ◽  
Author(s):  
Marcel F. Neuts

We introduce a versatile class of point processes on the real line, which are closely related to finite-state Markov processes. Many relevant probability distributions, moment and correlation formulas are given in forms which are computationally tractable. Several point processes, such as renewal processes of phase type, Markov-modulated Poisson processes and certain semi-Markov point processes appear as particular cases. The treatment of a substantial number of existing probability models can be generalized in a systematic manner to arrival processes of the type discussed in this paper.Several qualitative features of point processes, such as certain types of fluctuations, grouping, interruptions and the inhibition of arrivals by bunch inputs can be modelled in a way which remains computationally tractable.


2019 ◽  
Vol 52 (2) ◽  
pp. 216-235 ◽  
Author(s):  
Mohsen Varmazyar ◽  
Raha Akhavan-Tabatabaei ◽  
Nasser Salmasi ◽  
Mohammad Modarres

1992 ◽  
Vol 24 (1) ◽  
pp. 223-225 ◽  
Author(s):  
M. Manoharan ◽  
Harshinder Singh ◽  
Neeraj Misra

In this paper, we consider the life distribution H(t) of a device subject to shocks governed by a finite mixture of homogeneous Poisson processes. It will be shown that if (pk), the probabilities that the device fails on the kth shock, has a discrete phase-type (DPH) distribution, then H(t) is continuous phase-type (CPH). The relationship between the mean values of (pk) and H(t) is established.


1979 ◽  
Vol 16 (04) ◽  
pp. 764-779 ◽  
Author(s):  
Marcel F. Neuts

We introduce a versatile class of point processes on the real line, which are closely related to finite-state Markov processes. Many relevant probability distributions, moment and correlation formulas are given in forms which are computationally tractable. Several point processes, such as renewal processes of phase type, Markov-modulated Poisson processes and certain semi-Markov point processes appear as particular cases. The treatment of a substantial number of existing probability models can be generalized in a systematic manner to arrival processes of the type discussed in this paper. Several qualitative features of point processes, such as certain types of fluctuations, grouping, interruptions and the inhibition of arrivals by bunch inputs can be modelled in a way which remains computationally tractable.


2014 ◽  
Vol 30 (4) ◽  
pp. 576-597 ◽  
Author(s):  
V. Ramaswami ◽  
N. C. Viswanath

2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


Sign in / Sign up

Export Citation Format

Share Document