scholarly journals Unique strong solutions of Lévy processes driven stochastic differential equations with discontinuous coefficients

Stochastics ◽  
2019 ◽  
Vol 91 (4) ◽  
pp. 592-612
Author(s):  
Jie Xiong ◽  
Jiayu Zheng ◽  
Xiaowen Zhou
2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350007 ◽  
Author(s):  
HUIJIE QIAO ◽  
JINQIAO DUAN

After defining non-Gaussian Lévy processes for two-sided time, stochastic differential equations with such Lévy processes are considered. Solution paths for these stochastic differential equations have countable jump discontinuities in time. Topological equivalence (or conjugacy) for such an Itô stochastic differential equation and its transformed random differential equation is established. Consequently, a stochastic Hartman–Grobman theorem is proved for the linearization of the Itô stochastic differential equation. Furthermore, for Marcus stochastic differential equations, this topological equivalence is used to prove the existence of global random attractors.


Sign in / Sign up

Export Citation Format

Share Document