scholarly journals TOPOLOGICAL EQUIVALENCE FOR DISCONTINUOUS RANDOM DYNAMICAL SYSTEMS AND APPLICATIONS

2013 ◽  
Vol 14 (01) ◽  
pp. 1350007 ◽  
Author(s):  
HUIJIE QIAO ◽  
JINQIAO DUAN

After defining non-Gaussian Lévy processes for two-sided time, stochastic differential equations with such Lévy processes are considered. Solution paths for these stochastic differential equations have countable jump discontinuities in time. Topological equivalence (or conjugacy) for such an Itô stochastic differential equation and its transformed random differential equation is established. Consequently, a stochastic Hartman–Grobman theorem is proved for the linearization of the Itô stochastic differential equation. Furthermore, for Marcus stochastic differential equations, this topological equivalence is used to prove the existence of global random attractors.

2015 ◽  
Vol 52 (01) ◽  
pp. 149-166 ◽  
Author(s):  
Hanchao Wang

In this paper we propose the asymptotic error distributions of the Euler scheme for a stochastic differential equation driven by Itô semimartingales. Jacod (2004) studied this problem for stochastic differential equations driven by pure jump Lévy processes and obtained quite sharp results. We extend his results to a more general pure jump Itô semimartingale.


2015 ◽  
Vol 52 (1) ◽  
pp. 149-166 ◽  
Author(s):  
Hanchao Wang

In this paper we propose the asymptotic error distributions of the Euler scheme for a stochastic differential equation driven by Itô semimartingales. Jacod (2004) studied this problem for stochastic differential equations driven by pure jump Lévy processes and obtained quite sharp results. We extend his results to a more general pure jump Itô semimartingale.


2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2020 ◽  
Vol 52 (2) ◽  
pp. 523-562
Author(s):  
Phillippe Briand ◽  
Abir Ghannoum ◽  
Céline Labart

AbstractIn this paper, a reflected stochastic differential equation (SDE) with jumps is studied for the case where the constraint acts on the law of the solution rather than on its paths. These reflected SDEs have been approximated by Briand et al. (2016) using a numerical scheme based on particles systems, when no jumps occur. The main contribution of this paper is to prove the existence and the uniqueness of the solutions to this kind of reflected SDE with jumps and to generalize the results obtained by Briand et al. (2016) to this context.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1153
Author(s):  
Na Zhang ◽  
Guangyan Jia

In this paper, we introduce the Lie-point symmetry method into backward stochastic differential equation and forward–backward stochastic differential equations, and get the corresponding deterministic equations.


2020 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

AbstractIn this paper, we are concerned with an optimal control problem where the system is driven by a backward doubly stochastic differential equation with risk-sensitive performance functional. We generalized the result of Chala [A. Chala, Pontryagin’s risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.) 48 2017, 3, 399–411] to a backward doubly stochastic differential equation by using the same contribution of Djehiche, Tembine and Tempone in [B. Djehiche, H. Tembine and R. Tempone, A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control 60 2015, 10, 2640–2649]. We use the risk-neutral model for which an optimal solution exists as a preliminary step. This is an extension of an initial control system in this type of problem, where an admissible controls set is convex. We establish necessary as well as sufficient optimality conditions for the risk-sensitive performance functional control problem. We illustrate the paper by giving two different examples for a linear quadratic system, and a numerical application as second example.


Sign in / Sign up

Export Citation Format

Share Document