lévy processes
Recently Published Documents


TOTAL DOCUMENTS

1462
(FIVE YEARS 194)

H-INDEX

54
(FIVE YEARS 4)

Author(s):  
G. L. Zitelli

AbstractWe prove the existence of joint limiting spectral distributions for families of random sample covariance matrices modeled on fluctuations of discretized Lévy processes. These models were first considered in applications of random matrix theory to financial data, where datasets exhibit both strong multicollinearity and non-normality. When the underlying Lévy process is non-Gaussian, we show that the limiting spectral distributions are distinct from Marčenko–Pastur. In the context of operator-valued free probability, it is shown that the algebras generated by these families are asymptotically free with amalgamation over the diagonal subalgebra. This framework is used to construct operator-valued $$^*$$ ∗ -probability spaces, where the limits of sample covariance matrices play the role of non-commutative Lévy processes whose increments are free with amalgamation.


2022 ◽  
Vol 412 ◽  
pp. 126584
Author(s):  
Aili Zhang ◽  
Ping Chen ◽  
Shuanming Li ◽  
Wenyuan Wang

2021 ◽  
Vol 58 (4) ◽  
pp. 868-879
Author(s):  
Boris Buchmann ◽  
Kevin W. Lu

AbstractConsider the strong subordination of a multivariate Lévy process with a multivariate subordinator. If the subordinate is a stack of independent Lévy processes and the components of the subordinator are indistinguishable within each stack, then strong subordination produces a Lévy process; otherwise it may not. Weak subordination was introduced to extend strong subordination, always producing a Lévy process even when strong subordination does not. Here we prove that strong and weak subordination are equal in law under the aforementioned condition. In addition, we prove that if strong subordination is a Lévy process then it is necessarily equal in law to weak subordination in two cases: firstly when the subordinator is deterministic, and secondly when it is pure-jump with finite activity.


Author(s):  
Matteo Gardini ◽  
Piergiacomo Sabino ◽  
Emanuela Sasso

AbstractBased on the concept of self-decomposability, we extend some recent multidimensional Lévy models built using multivariate subordination. Our aim is to construct multivariate Lévy processes that can model the propagation of the systematic risk in dependent markets with some stochastic delay instead of affecting all the markets at the same time. To this end, we extend some known approaches keeping their mathematical tractability, study the properties of the new processes, derive closed-form expressions for their characteristic functions and detail how Monte Carlo schemes can be implemented. We illustrate the applicability of our approach in the context of gas, power and emission markets focusing on the calibration and on the pricing of spread options written on different underlying commodities.


Sign in / Sign up

Export Citation Format

Share Document