A New Superconvergent Projection Method for Approximate Solutions of Eigenvalue Problems

2003 ◽  
Vol 24 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Rekha P. Kulkarni
Author(s):  
Licai Wang ◽  
Yudong Chen ◽  
Chunyan Pei ◽  
Lina Liu ◽  
Suhuan Chen

Abstract The feedback control of Hopf bifurcation of nonlinear aeroelastic systems with asymmetric aerodynamic lift force and nonlinear elastic forces of the airfoil is discussed. For the Hopf bifurcation analysis, the eigenvalue problems of the state matrix and its adjoint matrix are defined. The Puiseux expansion is used to discuss the variations of the non-semi-simple eigenvalues, as the control parameter passes through the critical value to avoid the difficulty for computing the derivatives of the non-semi-simple eigenvalues with respect to the control parameter. The method of multiple scales and center-manifold reduction are used to deal with the feedback control design of a nonlinear system with non-semi-simple eigenvalues at the critical point of the Hopf bifurcation. The first order approximate solutions are developed, which include gain vector and input. The presented methods are based on the Jordan form which is the simplest one. Finally, an example of an airfoil model is given to show the feasibility and for verification of the present method.


1997 ◽  
Vol 119 (1) ◽  
pp. 110-119 ◽  
Author(s):  
L. Meirovitch

Closed-form solutions to differential eigenvalue problems associated with natural conservative systems, albeit self-adjoint, can be obtained in only a limited number of cases. Approximate solutions generally require spatial discretization, which amounts to approximating the differential eigenvalue problem by an algebraic eigenvalue problem. If the discretization process is carried out by the Rayleigh-Ritz method in conjunction with the variational approach, then the approximate eigenvalues can be characterized by means of the Courant and Fischer maximin theorem and the separation theorem. The latter theorem can be used to demonstrate the convergence of the approximate eigenvalues thus derived to the actual eigenvalues. This paper develops a maximin theorem and a separation theorem for discretized gyroscopic conservative systems, and provides a numerical illustration.


Sign in / Sign up

Export Citation Format

Share Document