Journal of Vibration and Acoustics
Latest Publications


TOTAL DOCUMENTS

3805
(FIVE YEARS 323)

H-INDEX

80
(FIVE YEARS 5)

Published By ASME International

1048-9002, 1528-8927

2022 ◽  
pp. 1-47
Author(s):  
Kou Miyamoto ◽  
Satoshi Nakano ◽  
Jinhua She ◽  
Daiki Sato ◽  
Yinli Chen ◽  
...  

Abstract This paper presents a new design method based on a robust-control strategy in the form of a linear matrix inequality (LMI) approach for a passive tuned mass damper (TMD), which is one of the common passive-control devices for structural vibration control. To apply the robust control theory, we first present an equivalent expression that describes a passive TMD as an active TMD. Then, some LMI-based condition is derived that not only guarantees robust stability but also allows us to adjust the robust H¥ performance. In particular, this paper considers the transfer function from a seismic-wave input to structural responses. Unlike other methods, this method formulates the problem to be a convex optimization problem that ensures a global optimal solution and considers uncertainties of mass, damping, and stiffness of a structure for designing a TMD. Numerical example uses both a single-degree-of-freedom (SDOF) and 10DOF models, and seismic waves. The simulation results demonstrated that the TMD that is designed by the presented method has good control performance even if the structural model includes uncertainties, which are the modeling errors.


2022 ◽  
pp. 1-18
Author(s):  
Gyani Shankar Sharma ◽  
Masahiro Toyoda ◽  
Alex Skvortsov ◽  
Ian MacGillivray ◽  
Nicole Kessissoglou

Abstract Time and frequency domain numerical models are developed to investigate the acoustic performance of metasurface coatings for marine applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for a metamaterial coating with cylindrical cavities are favourably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modelled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.


2022 ◽  
pp. 1-35
Author(s):  
Hongli Ji ◽  
Xiaoning Zhao ◽  
Ning Wang ◽  
Wei Huang ◽  
Jinhao Qiu ◽  
...  

Abstract A previously proposed planar axisymmetric dynamic vibration absorber (DVA), with embedded acoustic black hole (ABH) features, has been shown to suffer from the very selective coupling with the host structure, thus compromising its vibration reduction performance. To tackle the problem, an eccentric ABH-based circular DVA whose thickness profile is tailored according to a circumferential gradient variation is proposed in this paper. This new configuration preserves the ABH profile in the radial direction alongside a continuous variation along the circumferential direction and breaks the axisymmetry of the original DVA design at the same time. While the former permits the ABH features to fully play out in a continuous manner, the later entails a more effective coupling with the host structure. These salient properties have been demonstrated and confirmed both numerically and experimentally by examining a benchmark plate structure. For analyses, a coupling model embracing the host structure and the add-on DVAs is established which allows the calculation of the coupling coefficient, a vital quantity to guide the DVA design. Studies demonstrate the advantages of the proposed DVA over existing designs for the same given mass. The enriched structural coupling and the enhanced modal damping, arising from the eccentric and circumferentially graded ABH design, are shown to be the origin of such improvement. All in all, the physical process underpinning the dynamic absorber principle and waveguide absorber from the host structures is simultaneously consolidated, thus leading to superior broadband structural vibration suppression.


2022 ◽  
pp. 1-18
Author(s):  
Yuanfeng Xia ◽  
Jian Pang

Abstract The transient vibro-impacts induced by clearance between the connected rotors in driveline system easily causes serious transient noise and vibration, especially between the gear teeth with backlash. To analyze the transient vibro-impacts of the driveline system excited by a step-down engine torque, a new piecewise nonlinear clearance element with time-varying stiffness and oil squeeze damping is proposed, and an 8 degree-of-freedom lumped parameters model with the new piecewise nonlinear clearance elements is established. The transient vibro-impact phenomena of the vehicle driveline during fast disengagement of the clutch are numerically simulated. Colormaps of angular acceleration and vibro-impact force shows the difference of frequency components from transient impact to stable tooth-meshing. The phase plane reveals the phenomenon of multiple impacts and rebounds in each transient impact, and shows the relationship between the relative contact displacement and velocity. The frequency responses of the angular velocity, angular acceleration and vibro-impact forces with time-varying stiffness and linear stiffness are compared respectively. Compared with the widely used clearance element with piecewise linear stiffness, the new nonlinear clearance element with the piecewise nonlinear time-varying stiffness can better reveal the transient vibro-impact responses between the driving and driven gears. Lastly, the transient vibro-impact results of driveline system are verified by the vehicle experiments.


2022 ◽  
pp. 1-18
Author(s):  
Kevin Billon ◽  
Guoying Zhao ◽  
Christophe Collette ◽  
Simon Chesne

Abstract In this paper, a hybrid mass damper (HMD) and its hyperstability thanks to a power flow approach are studied. The HMD proposed combines an active control system with an optimal passive device. The initial passive system is an electromagnetic Tuned Mass Damper (TMD) and the control law is a modified velocity feedback with a phase compensator. The resulting hybrid controller system is theoretically hyperstable and ensures fail-safe behavior. Experiments are performed to validate the numerical simulation and provide good results in terms of vibration attenuations. Both excitation from the bottom in the frequency domain and shock response in the time domain are tested and analyzed. The different power flows in terms of active and reactive powers are estimated numerically and experimentally on the inertial damper (passive and active) and on the HMD. More over, through a mechanical analogy of the proposed system, it is shown that this hybrid device can be seen as an active realization of an inerter based tuned-mass-damper associated with a sky-hook damper. Observations and analysis provide insight into the hyperstable behavior imposed by the specific control law.


2022 ◽  
pp. 1-33
Author(s):  
Yan Xu ◽  
Yang Caijin ◽  
Weihua Zhang ◽  
Weidong Zhu ◽  
Wei Fan

Abstract A new moving Kirchhoff-Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle-pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian-Eulerian method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element, where its governing equations are derived using Lagrange's equations. The moving plate element is validated by different plate subjected to moving load cases, where the influences of different factors on reduced plate area length of the RBM model are also investigated. Then a vehicle-pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one third of that using the MSM. It is also found that the moving load velocity and ground damping have great influences on reduced plate area length of the RBM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle-pavement interaction.


2021 ◽  
pp. 1-31
Author(s):  
Lukas Woiwode ◽  
Florian Müller ◽  
Johann Gross ◽  
Maren Scheel ◽  
Malte Krack

Abstract A characteristic feature of nonlinear vibrations is the energy transfer among different parts or modes of a mechanical system. Moreover, nonlinear vibrations are often non-periodic, even at steady state. To analyze these phenomena experimentally, the vibration response must be measured at multiple locations in a time-synchronous way. For this task, piezoelectric accelerometers are by far the most popular technology. While the effect of attached sensors on linear vibration properties is well-known (mass loading in particular), the purpose of the present work is to assess their intrusiveness on nonlinear vibrations. To this end, we consider a compressor blade that undergoes impacts near the tip for sufficiently large vibrations. We consider two configurations, one in which five triaxial piezoelectric accelerometers are glued to the blade surface and one without sensors attached. In both configurations, the vibration response is measured using a multi-point laser Doppler vibrometer. In the linear case without impacts, the lowest-frequency bending mode merely sees the expected slight frequency shift due to mass loading. In the nonlinear vibro-impact case, unexpectedly, the near-resonant response to harmonic base excitation changes severely both quantitatively and qualitatively. In particular, pronounced strongly modulated responses and period doubling are observed only in the case without attached sensors. We conjecture that this is due to a considerable increase of damping, caused by the sensor cables, affecting mainly the higher-frequency modes.


2021 ◽  
pp. 1-37
Author(s):  
Jonathan Rodriguez ◽  
Manuel Collet ◽  
Simon Chesne

Abstract This paper proposes an active modal vibration control method based on a modal sliding mode controller applied to a smart material composite structure with integrated piezoelectric transducers as actuators and sensors. First, the electromechanical coupled system is identified using a modal reduced-order model. The sliding surface is based on the modal-filtered states and designed using a general formulation allowing the control of multiple vibration modes with multiple piezoelectric sensors and actuators. The performance and stability of the nonlinear controller are addressed and confirmed with the experimental results on a composite smart spoiler-shaped structure. The nonlinear switching control signal, based on the modal-shaped sliding surface improves the performances of the linear part of the control while maintaining not only stability but also robustness. The attenuation level achieved on the target modes on all piezoelectric sensors starts from -14dB up to -22dB, illustrating the strong potential of nonlinear switching control methods in active vibration control.


2021 ◽  
pp. 1-20
Author(s):  
Christopher Sevigney ◽  
Onome Scott-Emuakpor ◽  
Farhad Farzbod

Abstract Resonance ultrasound spectroscopy (RUS) is a non-destructive technique for evaluating elastic and an-elastic material properties. The frequencies of free vibrations for a carefully crafted sample are measured, and material properties can be extracted from this. In one popular application, the determination of monocrystal elasticity, the results are not always reliable. In some cases, the resonant frequencies are insensitive to changes in certain elastic constants or their linear combinations. Previous work has been done to characterize these sensitivity issues in materials with isotropic and cubic symmetry. This work examines the sensitivity of elastic constant measurements by the RUS method for materials with hexagonal symmetry, such as titanium-diboride. We investigate the reliability of RUS data and explore supplemental measurements to obtain an accurate and complete set of elastic constants.


2021 ◽  
pp. 1-17
Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Abstract Vibro-impacts are common in various automotive engine and transmission gear applications. They are known to cause excessive noise levels, often called rattling or hammering. Input and output fluctuations acting on such systems cause tooth separations and sequences of impacts allowed by backlash at the gear mesh interfaces. The fluctuations leading gear rattling have often been studied for specific applications with the excitations produced typically by an internal combustion engine. As such, rattle evaluations have been often empirical and specific to the systems considered. In this study, an experimental test set-up of a gear pair is developed to emulate the same torque fluctuations in a laboratory environment. This set-up is used to establish an impact velocity-based rattle severity index defined by the measured torsional behavior of the drive train that is shown to correlate well with the measured sound pressure levels. With that, a validated dynamic model of the experimental setup is employed to predict the same index to allow estimation of rattle noise outcome solely from a torsional dynamic model of the drivetrain. Predicted rattle severity indexes are shown to agree well with the measured ones within wide ranges of torque fluctuations and backlash magnitudes, allowing an assessment of rattle performance of a drivetrain solely from a torsional model.


Sign in / Sign up

Export Citation Format

Share Document