scholarly journals Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations.

1980 ◽  
Vol 85 (3) ◽  
pp. 516-526 ◽  
Author(s):  
J Meldolesi ◽  
G Corte ◽  
G Pietrini ◽  
N Borgese

NADH-cytochrome b5 reductases of rat liver microsomes, mitochondria, and heavy and light Golgi fractions (GF3 and GF 1+2) were compared by antibody inhibition and competition experiments, by peptide mapping, and by CNBr fragment analysis. The water-soluble portion of the microsomal enzyme, released by lysosomal digestion and purified by a published procedure, was used to raise antibodies in rabbits. Contaminant antimicrosome antibodies were removed from immune sera by immunoadsorption onto the purified antigen, and the F(ab')2 fragments of the pure antireductase antibody thus obtained were found to inhibit the NADH-cytochrome c reductase activity equally well in the four membrane fractions investigated, with similar dose-response relationships. Moreover, the purified water-soluble fragment of microsomal reductase, which by itself is very inefficient in reducing cytochrome c, competed for antibody binding with the membrane-bound enzymes, and therefore prevented the inhibition of their activity not only in microsomes but also in the other fractions. The reductases isolated from detergent-solubilized microsomes, mitochondria, GF3, and GF1+2 by immunoadsorption had identical mobilities in SDS polyacrylamide gels. The corresponding bands were eluted from gels, fragmented with pepsin or CNBr treatment, and the two families of peptides thus obtained were analyzed by two-dimensional mapping and SDS polyacrylamide gel electrophoresis, respectively. Both analyses failed to reveal differences among reductases of the four fractions. These findings support the hypothesis that NADH-cytochrome b5 reductase in its various subcellular locations is molecularly identical.

1992 ◽  
Vol 122 (4) ◽  
pp. 940-944 ◽  
Author(s):  
Fumio Watanabe ◽  
Yoshihisa Nakano ◽  
Hisako Saido ◽  
Yoshiyuki Tamura ◽  
Hiroyuki Yamanaka

1978 ◽  
Vol 27 (3) ◽  
pp. 367-368 ◽  
Author(s):  
Ademar Vieira De Barros ◽  
Jean-Claude Kaplan ◽  
Philippe Duvaldestin ◽  
Pierre Berthelot

1980 ◽  
Vol 85 (3) ◽  
pp. 501-515 ◽  
Author(s):  
N Borgese ◽  
J Meldolesi

The subcellular distribution of NADH-cytochrome b5 reductase in rat liver cells was reinvestigated. In fresh heavy and light Golgi fractions (GF3 and GF1 + 2) and in mitochondria, the specific activity of rotenone-insensitive NADH-cytochrome c reductase was approximately 100, 60, and 30%, respectively, of the value found in microsomes. However, the Golgi enzyme was unstable inasmuch as pelleting and resuspending the fresh fractions resulted in a considerable inactivation (40--60%), which was further increased with subsequent storage at 4 degrees C. A similar inactivation was observed using cytochrome b5 but not ferricyanide as electron acceptor. The inactivation of Golgi NADH-cytochrome c reductase activity was independent of the protein concentration of the fractions during storage, was unaffected by the addition of the antioxidant butylated hydroxytoluene, but was partly prevented by buffering the fractions at neutral pH and by storage at--20 degrees C. A total Golgi fraction was analyzed by density equilibration on continuous sucrose gradients after exposure to digitonin. As expected, the distribution of both protein and galactosyl transferase were shifted to higher densities by this treatment. However, not all galactosyl transferase-bearing elements were shifted to the same extent by exposure to the detergent, suggesting a biochemical heterogeneity of the Golgi complex. In contrast to their behavior in microsomes, the distribution of NADH-cytochrome c reductase and cytochrome b5 of Golgi fractions was shifted by digitonin, although to a lesser extent than that of galactosyl transferase. These results indicate that NADH-cytochrome b5 reductase is an authentic component of Golgi membranes, as well as of microsomes and of mitochondria. The conflicting results reported in the past on the Golgi localization of the enzyme could be due, on the one hand, to the differential lability of the activity in its various subcellular locations and, on the other, to the heterogeneity of the Golgi complex in terms of both cholesterol and enzyme distribution.


1992 ◽  
Vol 288 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M Williams ◽  
J Van der Zee ◽  
J Van Steveninck

In erythropoietic protoporphyria, accumulation of protoporphyrin has been found in various tissues and liver cirrhosis occurs frequently in this disease, probably due to toxic dark effects of protoporphyrin. We have studied the effect of porphyrins on various enzymic functions in rat liver microsomes. Incubation of microsomes with protoporphyrin resulted in a concentration-dependent inhibition of the oxidation of 7-ethoxycoumarin and aminopyrine by the cytochrome P-450 system. Kinetic analysis showed a decrease in Vmax., whereas the Km was not affected (non-competitive inhibition). Furthermore, reduction of cytochrome c by the NADPH-cytochrome P-450 reductase and by the NADH-cytochrome b5 reductase was inhibited. However, the activity of the reductases was only affected when the microsomes were pre-incubated with protoporphyrin, and it was found that the inhibition was dependent on the duration of the pre-incubation. Kinetic analysis again revealed non-competitive inhibition. When these experiments were repeated with uroporphyrin, no inhibition could be observed. With Stern-Volmer plots it was demonstrated that this was most likely caused by the localization of the porphyrins: protoporphyrin is localized in the membrane, whereas uroporphyrin remains in solution. From these results it is concluded that accumulation of protoporphyrin in the liver may markedly affect the cytochrome P-450 system and thus its detoxification function.


1974 ◽  
Vol 62 (3) ◽  
pp. 717-745 ◽  
Author(s):  
Alain Amar-Costesec ◽  
Maurice Wibo ◽  
Denise Thinès-Sempoux ◽  
Henri Beaufay ◽  
Jacques Berthet

Isopycnic equilibration and sedimentation rate studies of rat liver microsomes led previously to the assignment of microsomal constituents into group a1 (monoamine oxidase), group a2 (5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and cholesterol), group a3 (galactosyltransferase), group b (NADH cytochrome c reductase, NADPH cytochrome c reductase, aminopyrine demethylase, cytochrome b5 and P 450), and group c (glucose 6-phosphatase, esterase, nucleoside diphosphatase, ß-glucuronidase and glucuronyltransferase). Confirmation and extension of the assignment into groups has been obtained by studying the differential effect of the reagents digitonin, EDTA, and PPi. Digitonin specifically affected the equilibrium density only of the group a2 and (to a lesser extent) group a3, and not of groups b and c under conditions which preserved the structure-linked latency of nucleoside diphosphatase and galactosyltransferase. Within experimental error the rate of sedimentation of all microsomal constituents was unaffected. The morphological appearance under the electron microscope was indistinguishable from that of nondigitonin-treated microsomes, except that a few smooth membranes (< 10%) exhibited broken-looking profiles. Treatment of microsomes with EDTA or PPi detached a substantial part of RNA and released protein in excess over the amount accountable for by detachment of ribosome constituents. This detachment was confirmed by electron microscopy. EDTA and PPi decreased markedly the equilibrium density and the density dispersion of groups b and c, due mainly to the uncoating of rough elements. EDTA and PPi shifted slightly the distribution profiles of groups a towards lower densities, possibly as a result of the release of adsorbed proteins. The combination of EDTA and digitonin, used subsequently, rendered the average equilibrium density of group a2 higher than that of groups b and c. Dense subfractions were thus enriched in constituents of group a2 and showed mainly broken-looking vesicles under the electron microscope. The import of our results on the biochemical and enzymic properties of the subcellular components of the microsome fractions is discussed.


Sign in / Sign up

Export Citation Format

Share Document