polyacrylamide gel electrophoresis
Recently Published Documents


TOTAL DOCUMENTS

7598
(FIVE YEARS 517)

H-INDEX

145
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 935
Author(s):  
Preetiman Kaur ◽  
Shivani Sharma ◽  
Fawziah M. Albarakaty ◽  
Anu Kalia ◽  
Mohamed M. Hassan ◽  
...  

Industrialization and technological advancements have led to the exploitation of natural resources and the production of hazardous wastes, including electronic waste (E-waste). The traditional physical and chemical techniques used to combat E-waste accumulation have inherent drawbacks, such as the production of harmful gases and toxic by-products. These limitations may be prudently addressed by employing green biological methods, such as biosorption and bioleaching. Therefore, this study was aimed at evaluating the biosorption and bioleaching potential of seven microbial cultures using E-waste (printed circuit board (PCB)) as a substrate under submerged culture conditions. The cut pieces of PCB were incubated with seven microbial cultures in liquid broth conditions in three replicates. Atomic absorption spectroscopy (AAS) analysis of the culture biomass and culture filtrates was performed to evaluate and screen the better-performing microbial cultures for biosorption and bioleaching potentials. The best four cultures were further evaluated through SEM, energy-dispersive X-ray spectroscopy (EDX), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) studies to identify the possible culture that can be utilized for the biological decontamination of E-waste. The study revealed the highest and differential ability of Pleurotus florida and Pseudomonas spp. for biosorption and bioleaching of copper and iron. This can be attributed to bio-catalysis by the laccase enzyme. For both P. florida and Pseudomonas spp. on the 20th day of incubation, laccase exhibited higher specific activity (6.98 U/mg and 5.98 U/mg, respectively) than other microbial cultures. The biomass loaded with Cu2+ and Fe2+ ions after biosorption was used for the desorption process for recovery. The test cultures exhibited variable copper recovery efficiencies varying between 10.5 and 18.0%. Protein characterization through SDS-PAGE of four promising microbial cultures exhibited a higher number of bands in E-waste as compared with microbial cultures without E-waste. The surface topography studies of the E-waste substrate showed etching, as well as deposition of vegetative and spore cells on the surfaces of PCB cards. The EDX studies of the E-waste showed decreases in metal element content (% wt/% atom basis) on microbial treatment from the respective initial concentrations present in non-treated samples, which established the bioleaching phenomenon. Therefore, these microbial cultures can be utilized to develop a biological remediation method to manage E-waste.


2022 ◽  
Author(s):  
Takashi Akihiro ◽  
Ryou Yasui ◽  
Shinji Yasuhira ◽  
Ken-ich Matsumoto ◽  
Yasuhiro Tanaka ◽  
...  

Abstract Basket clam soup, a popular Asian dish, is prepared by boiling clams in hot water. The soup is generally cloudy and considered more delicious as cloudiness increases. However, the identity of the whitening ingredients and their relationship with taste remain unclear. In this study, we aimed to identify the components that contribute to the white color of the boiled soup. The white component was precipitated with trichloroacetic acid and reacted positively with ninhydrin, indicating the presence of proteins. The proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an intense band was observed at 33 kDa. Peptide mass fingerprinting of this band using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry revealed the protein to be tropomyosin. Basket clam tropomyosin expressed and purified from Escherichia coli turned the extracted solution white, confirming that tropomyosin contributed to the white color of clam soup.


2022 ◽  
Vol 8 ◽  
Author(s):  
Pan Hao ◽  
Kai-yue Song ◽  
Si-qi Wang ◽  
Xiao-jun Huang ◽  
Da-wei Yao ◽  
...  

Tumorigenesis is associated with metabolic abnormalities and genomic instability. Microsatellite mutations, including microsatellite instability (MSI) and loss of heterozygosity (LOH), are associated with the functional impairment of some tumor-related genes. To investigate the role of MSI and LOH in sporadic breast tumors in canines, 22 tumors DNA samples and their adjacent normal tissues were evaluated using polyacrylamide gel electrophoresis and silver staining for 58 microsatellites. Quantitative real-time polymerase chain reaction, promoter methylation analysis and immunohistochemical staining were used to quantify gene expression. The results revealed that a total of 14 tumors (6 benign tumors and 8 breast cancers) exhibited instability as MSI-Low tumors. Most of the microsatellite loci possessed a single occurrence of mutations. The maximum number of MSI mutations on loci was observed in tumors with a lower degree of differentiation. Among the unstable markers, FH2060 (4/22), ABCC9tetra (4/22) and SCN11A (6/22) were high-frequency mutation sites, whereas FH2060 was a high-frequency LOH site (4/22). The ABCC9tetra locus was mutated only in cancerous tissue, although it was excluded by transcription. The corresponding genes and proteins were significantly downregulated in malignant tissues, particularly in tumors with MSI. Furthermore, the promoter methylation results of the adenosine triphosphate binding cassette subfamily C member 9 (ABCC9) showed that there was a high level of methylation in breast tissues, but only one case showed a significant elevation compared with the control. In conclusion, MSI-Low or MSI-Stable is characteristic of most sporadic mammary tumors. Genes associated with tumorigenesis are more likely to develop MSI. ABCC9 protein and transcription abnormalities may be associated with ABCC9tetra instability.


2022 ◽  
Author(s):  
Huiling Wang ◽  
Kuan Yang ◽  
Liwei Guo ◽  
Lifen Luo ◽  
Chi He ◽  
...  

Abstract Sanqi round spot, which is caused by Mycocentrospora acerina, is a destructive disease limits the production of Panax notoginseng in Yunnan province of China. However, the disease has not been studied comprehensively. In the current study, we identify M. acerina polymorphic microsatellite markers using CERVUS 3.0 and compare the genetic diversity of its isolates from P. notoginseng round spot using Simple Sequence Repeat (SSR) markers and polyacrylamide gel electrophoresis. Thirty-two SSR markers with good polymorphism were developed using MISA and CERVUS 3.0. The genetic diversity of 187 M. acerina isolates were evaluated using 14 representative SSR primers, and the polymorphic information content values of 14 sites ranged from 0.813 to 0.946, with a total of 264 alleles detected at 14 microsatellite loci. The average expected heterozygosity was 0.8967. The genetic diversity of M. acerina in Yunnan province does not reflect geographic specificity.


2021 ◽  
Vol 100 (12) ◽  
pp. 1467-1474
Author(s):  
Svetlana V. Klinova ◽  
Ilzira A. Minigalieva ◽  
Yuri L. Protsenko ◽  
Marina P. Sutunkova ◽  
Iuliia V. Ryabova ◽  
...  

Introduction. One of the risk factors for cardiovascular diseases is the toxic metal pollution of the industrial area and the environment. Lead is the most critical of toxic metals. In industrial conditions, the body’s exposure to harmful substances is often combined with muscular work of varying severity. It has not been studied enough how these combinations influence the development of pathological processes associated with harmful exposure. Materials and methods. The subchronic experiment was carried out on white outbred male rats for six weeks. Intoxication was simulated by repeated intraperitoneal injections of lead acetate three times a week. Running was chosen to model the muscle exercise at a 25 m/min speed for 10 minutes 5 days a week. We performed biochemical and electrocardiographic studies. Blood pressure parameters were recorded. Muscle contractility was studied on isolated multicellular preparations of the right ventricular myocardium in isometric and physiological contraction modes. The ratio of myosin heavy chains was determined by the polyacrylamide gel electrophoresis. The sliding velocity of reconstituted thin filaments on myosin using an in vitro motility assay. Results. Physical exercise under lead intoxication normalized the level of calcium and the angiotensin-converting enzyme activity in the blood serum, the voltage of the isoelectric line and the amplitude of the T wave on the electrocardiogram. The combined action of lead and physical exercise showed an increase in the creatinine kinase-MB level. We found that the effect of exercise under lead intoxication on myocardial contractility was ambiguous. The maximum isotonic shortening velocity in trabeculae was normalized, but the maximum rate of strength development in the isometric mode in the papillary muscles decreased to a greater extent than under lead intoxication. The maximum sliding velocity of reconstituted thin filaments and myosin and the heavy chain ratio was partly normalized. Conclusion. In general, muscle exercise attenuated the lead cardiotoxic effects.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Aviva Levina ◽  
Boer Wang ◽  
Peter A. Lay

Transferrin (Tf) is a crucial transporter protein for Fe(III), but its biological role in binding other metal ions and their delivery into cells remain highly controversial. The first systematic exploration of the effect of non-Fe(III) metal ion binding on Tf conformation has been performed by urea-polyacrylamide gel electrophoresis (urea-PAGE), which is commonly used for nucleic acids but rarely for proteins. Closed Tf conformation, similar to that caused by Fe(III)-Tf binding, was formed for In(III), V(III) or Cr(III) binding to Tf. In all these cases, metal distribution between Tf lobes and/or the rate of metal release under acidic conditions differed from that of Fe(III)-Tf. By contrast, Ga(III) and V(IV) did not form closed Tf conformation under urea-PAGE conditions. Apart from Fe(III), only In(III) was able to increase the proportion of closed Tf conformation in whole serum. These results suggest that Tf is unlikely to act as a natural carrier of any metal ion, except Fe(III), into cells but can reduce toxicity of exogenous metal ions by binding them in serum and preventing their entry into cells.


2021 ◽  
Vol 12 (1) ◽  
pp. 150
Author(s):  
Wei Zhang ◽  
Jintao Wu ◽  
Jing Xiao ◽  
Mingyao Zhu ◽  
Haichuan Yang

Protease is the main enzyme of detergent. Through the combination of different proteases and the combination of protease and detergent additives, it can adapt to different washing conditions to improve the washing effect. In this experiment, whiteness determination, microscope scanning, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to detect the whiteness values of the cloth pieces before and after washing, as well as the stain residue between the fibers on the surface of the cloth pieces. The protease detergent formula with better decontamination and anti-deposition effects was selected. The combination of alkaline protease, keratinase, and trypsin was cost-effective in removing stains. Polyacrylamide gel electrophoresis showed that the molecular weight of the protein significantly changed after adding the enzyme preparation during washing, and the molecular weight of the protein was directly proportional to protein redeposition. The composite protease had a better comprehensive decontamination effect, and when compatible with suitable surfactants, anti-redeposition agents, and water-softening agents, the compound protease detergent exhibited a stronger decontamination ability than commercial detergents.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Yajun Zhu ◽  
Yufeng Lu ◽  
Tao Ye ◽  
Shaotong Jiang ◽  
Lin Lin ◽  
...  

The effects of different salt additions (1.0%, 1.5%, 2.0%, 2.5%, 3.0%, and 3.5%) on the gelling properties and protein phosphorylation of the mixed gels (MG) formed by silver carp (Hypophthalmichthys molitrix) surimi with 10% crabmeat were investigated. The MG’s breaking force, deformation, gel strength, and water-holding capacity (WHC) increased as the salt concentration increased. The intrinsic fluorescence intensity of the samples initially decreased and then increased, reaching the lowest when the NaCl concentration was 2.5%. The result of SDS–polyacrylamide gel electrophoresis indicated that large aggregates were formed by protein–protein interaction in the MG containing 2.5% or 3.0% NaCl, decreasing the protein band intensity. It was also found that with the addition of NaCl, the phosphorus content initially increased and then decreased, reaching the maximum when the NaCl concentration was 2% or 2.5%, which was similar to the changing trend of actin band intensity reported in the results of Western blot. These results revealed that the amount of salt used had a significant effect on the degree of phosphorylation of the MG protein. The increase in phosphorylation was linked to improved gelling properties, which could lead to new ideas for manufacturing low-salt surimi products in the future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256562
Author(s):  
Nagina Rafique ◽  
Saiqa Bashir ◽  
Muhammad Zubair Khan ◽  
Imran Hayat ◽  
Willium Orts ◽  
...  

Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.


Sign in / Sign up

Export Citation Format

Share Document