Bose-Einstein condensation of an ideal Bose gas trapped in any dimension

1998 ◽  
Vol 31 (41) ◽  
pp. 8289-8294 ◽  
Author(s):  
Lixuan Chen ◽  
Zijun Yan ◽  
Mingzhe Li ◽  
Chuanhong Chen
Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 773 ◽  
Author(s):  
Octavio Obregón ◽  
José López ◽  
Marco Ortega-Cruz

We explore some important consequences of the quantum ideal Bose gas, the properties of which are described by a non-extensive entropy. We consider in particular two entropies that depend only on the probability. These entropies are defined in the framework of superstatistics, and in this context, such entropies arise when a system is exposed to non-equilibrium conditions, whose general effects can be described by a generalized Boltzmann factor and correspondingly by a generalized probability distribution defining a different statistics. We generalize the usual statistics to their quantum counterparts, and we will focus on the properties of the corresponding generalized quantum ideal Bose gas. The most important consequence of the generalized Bose gas is that the critical temperature predicted for the condensation changes in comparison with the usual quantum Bose gas. Conceptual differences arise when comparing our results with the ones previously reported regarding the q-generalized Bose–Einstein condensation. As the entropies analyzed here only depend on the probability, our results cannot be adjusted by any parameter. Even though these results are close to those of non-extensive statistical mechanics for q ∼ 1 , they differ and cannot be matched for any q.


2002 ◽  
Vol 292 (6) ◽  
pp. 309-314 ◽  
Author(s):  
Yaogen Shu ◽  
Jincan Chen ◽  
Lixuan Chen

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 603 ◽  
Author(s):  
Vyacheslav I. Yukalov

Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above the Bose–Einstein condensation temperature T c , as well as below this temperature. The strength of particle fluctuations defines whether the system is stable or not. Stability conditions depend on the spatial dimensionality d and on the confining dimension D of the system. The consideration shows that mesoscopic systems, experiencing Bose–Einstein condensation, are stable when: (i) ideal Bose gas is confined in a rectangular box of spatial dimension d > 2 above T c and in a box of d > 4 below T c ; (ii) ideal Bose gas is confined in a power-law trap of a confining dimension D > 2 above T c and of a confining dimension D > 4 below T c ; (iii) the interacting Bose system is confined in a rectangular box of dimension d > 2 above T c , while below T c , particle interactions stabilize the Bose-condensed system, making it stable for d = 3 ; (iv) nonlocal interactions diminish the condensation temperature, as compared with the fluctuations in a system with contact interactions.


Sign in / Sign up

Export Citation Format

Share Document