equilibrium conditions
Recently Published Documents


TOTAL DOCUMENTS

1355
(FIVE YEARS 231)

H-INDEX

58
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Christophe Genthon ◽  
Dana E. Veron ◽  
Etienne Vignon ◽  
Jean-Baptiste Madeleine ◽  
Luc Piard

Abstract. The air at the surface of the high Antarctic Plateau is very cold, dry and clean. In such conditions the atmospheric moisture can significantly deviate from thermodynamic equilibrium conditions, and supersaturation with respect to ice can occur. Most conventional humidity sensors for meteorological applications cannot report supersaturation in this environment. A simple approach for measuring supersaturation using conventional instruments, one being operated in a heated airflow, is presented. Since 2018, this instrumental setup was deployed at 3 levels in the lower ~40 m above the surface at Dome C on the high Antarctic Plateau. The 3-year 2018–2020 record (Genthon et al. 2021) is presented and analyzed for features such as the frequency of supersaturation with respect to ice, diurnal and seasonal variability, and vertical distribution. As supercooled liquid water droplets are frequently observed in clouds at the temperatures met on the high Antarctic Plateau, the distribution of relative humidity with respect to liquid water at Dome C is also discussed. It is suggested that, while not strictly mimicking the conditions of the high troposphere, the surface atmosphere on the Antarctic Plateau is a convenient natural laboratory to test parametrizations of cold microphysics predominantly developed to handle the genesis of high tropospheric clouds. Data are distributed on the PANGAEA data repository at https://doi.pangaea.de/10.1594/PANGAEA.939425 (Genthon et al., 2021).


2022 ◽  
Vol 130 (2) ◽  
pp. 305
Author(s):  
М.Ю. Васильков ◽  
И.Н. Михайлов ◽  
Ю.В. Никулин ◽  
С.С. Волчков ◽  
Д.А. Зимняков ◽  
...  

Spectral optical properties of synthesized ceramic nanoporous membranes based on anodic aluminum oxide coated silver in saturated ammonia gas flow have been experimentally investigated. Based on the measured transmission spectra and detected interference part of the spectra in wavelength range from 550 to 900 nm, temporal and spectral dependencies of the effective optical thickness and its changes in non-equilibrium conditions were obtained due to adsorption of ammonia molecules on silver film surface. According to detected and measured interference maximum shifts up to 14 nm in transmission spectra of Al2O3 + Ag membranes in ammonia gas flow, the possibility of constructing a selective interferometric optical sensors with 10 − 15 min response time is shown.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012008
Author(s):  
K R Erager ◽  
V V Sokolovskiy ◽  
V D Buchelnikov

Abstract Using ab initio calculations, the phase stability of modulated and tetragonal martensitic structures in Ni43.75Co6.25Mn43.75(In, Sn)6.25 Heusler alloys with different magnetic order is investigated. The stability against the segregation is considered by a method for generating all possible decay reactions assuming the calculated ground state energies of each composition. It is shown that the highest probable stability under equilibrium conditions is demonstrated by alloys with tetragonal martensitic structure in accordance with reactions: Ni35Co5Mn35In5 → 25Mn + 35Ni + 5Mn2InCo and Ni35Co5Mn35Sn5 → 5CoSn + 35Mn + 35Ni.


Author(s):  
L. P. Kalacheva ◽  
◽  
I. K. Ivanova ◽  
A. S. Portnyagin ◽  
I. I. Rozhin ◽  
...  

This paper considers the possibility of the underground gas storage facilities creating in a hydrate state on the north-western slope of the Yakut arch of the Vilyui syneclise. For this, the boundaries of the hydrate stability zone were determined for 6 promising areas of the considered geological structure. Equilibrium conditions of the natural gas hydrates formation in the model porous media containing bicarbonate-sodium type water (mineralization 20 g/l), characteristic for the subpermafrost horizons of the Yakut arch, have been studied by the method of differential thermal analysis. On the basis of the obtained results, the boundaries of the natural gas hydrates stability zone were determined. It was shown that the upper boundaries of the hydrate stability zone are located in the thickness of permafrost rocks. It was found that the lower boundaries of the natural gas hydrates stability zone in moist unsalted porous medium lie in the range from 930 to 1120 m. When the samples are saturated with mineralized water, the boundaries are located 80-360 m higher. The obtained experimental results allow us to conclude that in subpermafrost aquifers of the Yakut arch has favorable conditions for the formation of natural gas hydrates. Keywords: natural gas hydrates; aquifers; underground gas storage; hydrate stability zone; geothermal gradient; equilibrium conditions of the hydrate formation; bicarbonate-sodium type water.


10.30544/646 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 425-436
Author(s):  
Z. M. Slović ◽  
D. Bradarić ◽  
Karlo Raić ◽  
J. Z. Slović

In integrated steel plants, the removal of phosphorous normally takes place during the primary basic oxygen furnace (BOF) steelmaking process. Phosphorous is usually introduced to the integrated steelmaking process through blast furnace additions, such as iron ore, coke, sinter, and fluxes. Among the others parameters such as optimizing the charging system, oxygen supply system, oxygen lance parameters of the converter, the flux quality in combination with temperature process control can improve the BOF efficiency of Dephosphorization. Phosphorus partition ratio (LP) is usually used to evaluate the thermodynamic efficiency of the dephosphorization of slags with different compositions in steelmaking processes. However, this parameter is only useful in equilibrium conditions, and it is not accurate when used to evaluate slag efficiency in industrial processes. Because of this, the aim of this work was to study the phosphorus partition ratio estimated from the experimental results in real plant conditions of two different BOF steel plants and compare them with well-known published models. In the present study, data from two steel plants (further Plant A and Plant B) were evaluated applying Healy’s, Suito and Inoui’s, Zhang’s as well as Assis’s equations. The calculated values were compared against measured values.


Author(s):  
Adnan Malik ◽  
Iftikhar Ahmad ◽  
Kiran

In this paper, we investigate the behavior of anisotropic compact stars in generalized modified gravity, namely [Formula: see text] gravity, where [Formula: see text] represents the Ricci scalar, [Formula: see text] is the scalar potential function and [Formula: see text] is a kinetic term of [Formula: see text]. We consider the spherically symmetric spacetime to analyze the feasible exposure of compact stars. We observe the behavior of anisotropic compact stars which includes Her X1, SAX J 1808.4-3658 and 4U 1820-30. From the graphical evaluation of energy density, tangential pressure, radial pressure, equilibrium conditions, energy conditions, mass–radius relationship, compactness and stability analysis of compact stars, it is concluded that the behavior of candidates of compact stars is regular in [Formula: see text] gravity for the considered parameter.


2021 ◽  
Vol 64 (1) ◽  
pp. 014001
Author(s):  
J P Graves ◽  
M Coste-Sarguet ◽  
C Wahlberg

Abstract A general set of equations that govern global resistive interchange, resistive internal kink and resistive infernal modes in a toroidal axisymmetric equilibrium are systematically derived in detail. Tractable equations are developed such that resistive effects on the fundamental rational surface can be treated together with resistive effects on the rational surfaces of the sidebands. Resistivity introduces coupling of pressure driven toroidal instabilities with ion acoustic waves, while compression introduces flute-like flows and damping of instabilities, enhanced by toroidal effects. It is shown under which equilibrium conditions global interchange, internal kink modes or infernal modes occur. The m = 1 internal kink is derived for the first time from higher order infernal mode equations, and new resistive infernal modes resonant at the q = 1 surface are reduced analytically. Of particular interest are the competing effects of resistive corrections on the rational surfaces of the fundamental harmonic and on the sidebands, which in this paper is investigated for standard profiles developed for the m = 1 internal kink problem.


2021 ◽  
Author(s):  
Alan Ianeselli ◽  
Damla Tetiker ◽  
Julian Stein ◽  
Alexandra Kühnlein ◽  
Christof B. Mast ◽  
...  

AbstractKey requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.


2021 ◽  
Vol 931 (1) ◽  
pp. 012012
Author(s):  
E V Kusochkova ◽  
I M Indrupskiy ◽  
V N Kuryakov

Abstract It is known that initial composition of the hydrocarbon fluid in a petroleum reservoir changes significantly with depth due to the influence of gravity and geothermal gradient. Classical models of these phenomena are based on the assumption of equilibrium (quasiequilibrium) distribution of component concentrations in the gravity field with the presence of stationary thermodiffusional flux. However, there are typical situations in gas condensate reservoirs when the quasi-equilibrium conditions are not met. For example, this is true if immobile residual oil exists in the reservoir or for deep tight formations where gravity segregation is not completed. For such cases, modified models are required. They are proposed in this paper to take into account the non-equilibrium conditions of the initial fluid composition distribution in gas condensate (or oil-gas-condensate) reservoirs.


Author(s):  
A. Thakur ◽  
S. Sharma ◽  
K. Qanungo

Equilibrium Quality Criterion (EQC) Level I calculations have been performed with Standard Equilibrium Quality Criterion (EQC) environment to study the environmental partitioning of a fungicide Fluopyram. Equilibrium Quality Criterion (EQC) Level I calculation assumes no degradation of the chemical, steady-state, and equilibrium conditions between the environmental compartments. The results reveal that the concentration of Fluopyram is expected to be maximum in the sediment compartment, followed by soil and water compartments. The effect of soil and sediment types on partitioning has been studied by systematically varying the densities of these two compartments. In the sediment compartment, the Fluopyram concentration is predicted to be highest if the sediment type is ‘sandy’ and the soil type is ‘clay’.


Sign in / Sign up

Export Citation Format

Share Document