Detailed solution of the problem of Landau states in a symmetric gauge

2020 ◽  
Vol 41 (3) ◽  
pp. 035404
Author(s):  
Orion Ciftja
Keyword(s):  
2018 ◽  
Vol 96 (9) ◽  
pp. 969-977
Author(s):  
Haizhao Zhi

Lyra geometry is a conformal geometry that originated from Weyl geometry. In this article, we derive the exterior field equation under a spherically symmetric gauge function x0(r) and metric in Lyra geometry. When we impose a specific form of the gauge function x0(r), the radial differential equation of the metric component g00 will possess an irregular singular point (ISP) at r = 0. Moreover, we can apply the method of dominant balance to get the asymptotic behavior of the new space–time solution. The significance of this work is that we can use a series of smooth gauge functions x0(r) to modulate the degree of divergence of the singularity at r = 0, which will become a naked singularity under certain conditions. Furthermore, we investigate the physical meaning of this novel behavior of space–time in Lyra geometry and find out that no spaceship with finite integrated acceleration can arrive at this singularity at r = 0. The physical meaning of the gauge function and integrability is also discussed.


Sign in / Sign up

Export Citation Format

Share Document