Thermally activated repolarization of antiferromagnetic particles: Monte Carlo dynamics

2017 ◽  
Vol 50 (6) ◽  
pp. 065002
Author(s):  
S V Soloviev ◽  
A F Popkov ◽  
A A Knizhnik ◽  
I M Iskandarova
2021 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Leonardo Golubović ◽  
Dorel Moldovan

We explore irreversible thermally activated growth of cracks which are shorter than the Griffith length. Such a growth was anticipated in several studies [Golubović, L. & Feng, S., (1991). Rate of microcrack nucleation, Physical Review A 43, 5223. Golubović, L. & Peredera, A., (1995).  Mechanism of time-delayed fractures, Physical Review E 51, 2799]. We explore this thermally activated growth by means of atomistic Monte-Carlo dynamics simulations of stressed monocrystals. This crack growth is stepwise. Each step is marked by nucleation of a microcavity close to the crack tip, and by creation of a passage connecting the microcavity and the crack. If the external tensile stress is weak, many such nucleation events occur before the crack length reaches the Griffith size. In addition to the simulations, we also present an analytic theory of the stepwise thermally activated crack growth. The theory explains surprising observation form our simulations that the thermally activated crack growth remains fairly well directed in spite of the stochastic nature of the crack growth process.


2003 ◽  
Vol 85 (5) ◽  
pp. 3271-3278 ◽  
Author(s):  
Andrzej Kolinski ◽  
Piotr Klein ◽  
Piotr Romiszowski ◽  
Jeffrey Skolnick

1990 ◽  
Vol 60 (5-6) ◽  
pp. 889-889 ◽  
Author(s):  
P. Tamayo ◽  
R. C. Brower ◽  
W. Klein

2011 ◽  
Vol 2011 (7) ◽  
Author(s):  
Margarita García Pérez ◽  
Antonio González-Arroyo ◽  
Alfonso Sastre

2001 ◽  
Vol 373-376 ◽  
pp. 705-708 ◽  
Author(s):  
Paulo H.R. Barbosa ◽  
E.P. Raposo ◽  
M.D. Coutinho-Filho

Sign in / Sign up

Export Citation Format

Share Document