fractal structures
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 121)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yao Song ◽  
Xiangyu Pei ◽  
Huichao Liu ◽  
Jiajia Zhou ◽  
Zhibin Wang

Abstract. Accurate particle classification plays a vital role in aerosol studies. Differential mobility analyzer (DMA), centrifugal particle mass analyzer (CPMA) and aerodynamic aerosol classifier (AAC) are commonly used to select particles with a specific size or mass. However, multiple charging effect cannot be entirely avoided either using individual technique or using tandem system such as DMA-CPMA, especially when selecting soot particles with fractal structures. In this study, we demonstrate the transfer functions of DMA-CPMA and DMA-AAC systems, as well as the potential multiple charging effect. Our results show that the ability to remove multiply charged particles mainly depends on particles morphology and instruments setups of DMA-CPMA system. Using measurements from soot experiments and literature data, a general trend in the appearance of multiple charging effect with decreasing size when selecting aspherical particles was observed. Otherwise, our results indicated that the ability of DMA-AAC to resolve particles with multiple charges is mainly related to the resolutions of classifiers. In most cases, DMA-AAC can eliminate multiple charging effect regardless of the particle morphology, while particles with multiple charges can be selected when decreasing resolutions of DMA and AAC. We propose that the multiple charging effect should be reconsidered when using DMA-CPMA or DMA-AAC system in estimating size and mass resolved optical properties in the field and lab experiments.


Author(s):  
Gennady M. Aldonin ◽  
◽  
Vasily V. Cherepanov ◽  

In domestic and foreign practice, a great deal of experience has been accumulated in the creation of means for monitoring the functional state of the human body. The existing complexes mainly analyze the electrocardiogram, blood pressure and a number of other physiological parameters. Diagnostics is often based on formal statistical data which are not always correct due to the nonstationarity of bioprocesses and without taking into account their physical nature. An urgent task of monitoring the state of the cardiovascular system is the creation of effective algorithms for computer technologies to process biosignals based on nonlinear dynamic models of body systems since biosystems and bioprocesses have a nonlinear nature and fractal structure. The nervous and muscular systems of the heart, the vascular and bronchial systems of the human body are examples of such structures. The connection of body systems with their organization in the form of self-similar fractal structures with scaling close to the “golden ratio” makes it possible to diagnose them topically. It is possible to obtain detailed information about the state of the human body’s bio-networks for topical diagnostics on the basis of the wavelet analysis of biosignals (the so-called wavelet-introscopy). With the help of wavelet transform, it is possible to reveal the structure of biosystems and bioprocesses, as a picture of the lines of local extrema of wavelet diagrams of biosignals. Mathematical models and software for wavelet introscopy make it possible to extract additional information from biosignals about the state of biosystems. Early detection of latent forms of diseases using wavelet introscopy can shorten the cure time and reduce the consequences of disorders of the functional state of the body (FSO), and reduce the risk of disability. Taking into account the factors of organizing the body’s biosystems in the form of self-similar fractal structures with a scaling close to the “golden ratio” makes it possible to create a technique for topical diagnostics of the most important biosystems of the human body.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefen Kan ◽  
Ke Chen ◽  
Cheng Yin ◽  
Yu Yang ◽  
Minglei Shan ◽  
...  

Planar fractal microstructure is observed on the silver film treated by positive corona discharge for the first time. Due to the abundant positive ions driven by the electrical field of positive polarity, surface modification is mainly induced by the plasma oxidation effect, resulting in a large scale of dendritic pattern with self-similarity and hierarchy. In contrast, negative ions dominate the plasma-film interaction under negative corona discharge condition, leading to a different surface morphology without fractal characteristics. A growth model based on the modified diffusion-limited aggregation (DLA) theory is proposed to describe the formation of the dendritic fractal structure, whilst the physics behind is attributed to the electric field directed diffusion of the positive ions around the surface roughness. Numerical simulation verifies the high density of the hot spot in the dendritic pattern, which may enable potential applications in fractal photonic metamaterials.


Author(s):  
Дмитрий Викторович Иванов ◽  
Виталий Александрович Анофриев ◽  
Владимир Александрович Кошелев ◽  
Александр Сергеевич Антонов ◽  
Сергей Александрович Васильев ◽  
...  

В данной работе методом молекулярной динамики с использованием потенциала сильной связи проведено моделирование процесса молекулярно-лучевой эпитаксии с целью определения закономерностей при формировании фрактальных металлических пленок платины на поверхности родия. Установлена возможность формирования фрактальных структур как в островковых пленках платины на поверхности родия, так и в сплошной пленке. Установлены параметры компьютерного эксперимента, определяющие переход от отдельных островковых пленок к сплошной пленке в указанной системе. С использованием различных программных продуктов Gwyddion и Image Analysis, а также собственной разработки FractalSurface проанализирован диапазон изменения фрактальной размерности при различных условиях молекулярно-динамического эксперимента методом подсчета кубов. Полученные значения фрактальной размерности в целом находятся в приемлемом согласии между собой, однако существует ряд исключений, которые обсуждаются более подробно. Сравнительный анализ получаемых результатов позволяет формулировать рекомендации для методики создания, корректировки и прецизионного контроля при «выращивании» структур с заданной морфологией поверхности. In this work, the molecular dynamics method and the tight-binding potential are used to simulate the process of molecular beam epitaxy in order to determine the regularities in the formation of fractal platinum metal films on the rhodium surface. The possibility of formation of fractal structures both in island platinum films on the rhodium surface and in a continuous film has been established. The parameters of the computer experiment, which determine the transition from individual island films to a continuous film in the indicated system, have been established. Using various software products Gwyddion and Image Analysis, as well as our own software FractalSurface, the range of changes in the fractal dimension has been analyzed under various conditions of a molecular dynamics experiment by the method of cube counting. The obtained values of the fractal dimension are generally in acceptable agreement with each other; however, there is a number of exceptions, which are discussed in more detail. A comparative analysis of the results obtained allows one to formulate recommendations for the methodology for creating, adjusting and precision control when «growing» structures with a given surface morphology.


2021 ◽  
pp. 2111229
Author(s):  
Tian Li ◽  
Weitao Jiang ◽  
Yue Zhang ◽  
Baotong Li ◽  
Lanlan Wang ◽  
...  

Author(s):  
Shuguang Fang ◽  
Lianwen Deng ◽  
Pin Zhang ◽  
Lei-Lei Qiu ◽  
Haipeng Xie ◽  
...  

Abstract In this paper, two kinds of dual-band metamaterial absorbers (MMAs) with stable absorption performance based on fractal structures are proposed. As the key feature, with the increase in fractal order, the fractal MMAs can reduce the weight while keeping the absorption performance. The multi-band absorption property is analyzed by multiple L-C resonances generated by the fractal structure. By virtue of good impedance matching characteristics and the synergy of the circuit and electromagnetic resonance, effective and stable microwave absorption is readily achieved. Finally, two prototypes are fabricated for demonstration, and the measurement result is consistent well with the simulation one. As expected, the proposed fractal MMAs have the advantage of low-cost, light-weight, and dual-effective absorption bands, and have great potential in the application of multi-band radar stealth.


2021 ◽  
Author(s):  
Yoshito Hirata ◽  
Arisa H. Oda ◽  
Chie Motono ◽  
Masanori Shiro ◽  
Kunihiro Ohta

AbstractThe sparseness of chromosomal contact information and the presence of homologous chromosomes with very similar nucleotide sequences make Hi-C analysis difficult. We propose a new algorithm using allele-specific single-nucleotide variations (SNVs) to reconstruct the three-dimensional (3D) chromosomal architectures from the Hi-C dataset of single diploid cells. Our algorithm has a function to discriminate SNVs specifically found between homologous chromosomes to our “recurrence plot”-based algorithm to estimate the 3D chromosome structure, which does not require imputation for ambiguous segment information. The new algorithm can efficiently reconstruct 3D chromosomal structures in single human diploid cells by employing only Hi-C segment pairs containing allele-specific SNVs. The datasets of the remaining pairs of segments without allele-specific SNVs are used to validate the estimated chromosome structure. This approach was used to reconstruct the 3D structures of human chromosomes in single diploid cells at a 1-Mb resolution. Introducing a subsequent mathematical measure further improved the resolution to 40-kb or 100-kb. The reconstruction data reveals that human chromosomes form chromosomal territories and take fractal structures where the mean dimension is a non-integer value. We also validate our approach by estimating 3D protein/polymer structures.


2021 ◽  
Vol 118 (37) ◽  
pp. e2019891118
Author(s):  
Yang Lu ◽  
Ruoyu Wang ◽  
Yuzhang Zhu ◽  
Zhenyi Wang ◽  
Wangxi Fang ◽  
...  

In this study, we report the emergence of two-dimensional (2D) branching fractal structures (BFS) in the nanoconfinement between the active and the support layer of a thin-film-composite polyamide (TFC-PA) nanofiltration membrane. These BFS are crystal dendrites of NaCl formed when salts are either added to the piperazine solution during the interfacial polymerization process or introduced to the nascently formed TFC-PA membrane before drying. The NaCl dosing concentration and the curing temperature have an impact on the size of the BFS but not on the fractal dimension (∼1.76). The BFS can be removed from the TFC-PA membranes by simply dissolving the crystal dendrites in deionized water, and the resulting TFC-PA membranes have substantially higher water fluxes (three- to fourfold) without compromised solute rejection. The flux enhancement is believed to be attributable to the distributed reduction in physical binding between the PA active layer and the support layer, caused by the exertion of crystallization pressure when the BFS formed. This reduced physical binding leads to an increase in the effective area for water transport, which, in turn, results in higher water flux. The BFS-templating method, which includes the interesting characteristics of 2D crystal dendrites, represents a facile, low-cost, and highly practical method of enhancing the performance of the TFC-PA nanofiltration membrane without having to alter the existing infrastructure of membrane fabrication.


Sign in / Sign up

Export Citation Format

Share Document