Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene

2020 ◽  
Vol 29 (12) ◽  
pp. 127102
Author(s):  
Ming Zhang ◽  
Yu Zhang ◽  
Chen Lu ◽  
Wei-Qiang Chen ◽  
Fan Yang
2020 ◽  
Vol 102 (15) ◽  
Author(s):  
A. O. Sboychakov ◽  
A. V. Rozhkov ◽  
A. L. Rakhmanov ◽  
Franco Nori

Author(s):  
Folkert K. de Vries ◽  
Elías Portolés ◽  
Giulia Zheng ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


JETP Letters ◽  
2020 ◽  
Vol 112 (10) ◽  
pp. 651-656
Author(s):  
A. O. Sboychakov ◽  
A. V. Rozhkov ◽  
K. I. Kugel ◽  
A. L. Rakhmanov

Nature ◽  
2019 ◽  
Vol 573 (7772) ◽  
pp. 91-95 ◽  
Author(s):  
Yuhang Jiang ◽  
Xinyuan Lai ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Kristjan Haule ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document