spin density
Recently Published Documents


TOTAL DOCUMENTS

3052
(FIVE YEARS 165)

H-INDEX

101
(FIVE YEARS 6)

Author(s):  
Ilya A. Nechaev ◽  
Eugene Krasovskii

Abstract A theoretical study is presented of the effect of an in-plane magnetic exchange field on the band structure of centrosymmetric films of noble metals and topological insulators. Based on an ab initio relativistic k·p theory, a minimal effective model is developed that describes two coupled copies of a Rashba or Dirac electronic system residing at the opposite surfaces of the film. The coupling leads to a structural gap at Γ and causes an exotic redistribution of the spin density in the film when the exchange field is introduced. We apply the model to a nineteen-layer Au(111) film and to a five-quintuple-layer Sb2Te3 film. We demonstrate that at each film surface the exchange field induces spectrum distortions similar to those known for Rashba or Dirac surface states with an important difference due to the coupling: At some energies, one branch of the state loses its counterpart with the oppositely directed group velocity. This suggests that a large-angle electron scattering between the film surfaces through the interior of the film is dominant or even the only possible for such energies. The spin-density redistribution accompanying the loss of the counterpart favors this scattering channel.


2021 ◽  
Vol 36 (39) ◽  
Author(s):  
Bedangadas Mohanty ◽  
Sourav Kundu ◽  
Subhash Singha ◽  
Ranbir Singh

This paper covers the recent experimental development on spin alignment measurements of [Formula: see text] and [Formula: see text] vector mesons in heavy-ion and [Formula: see text] collisions at RHIC and LHC energies. Measurements in [Formula: see text] collisions at LEP energies are also discussed. Spin alignment of vector mesons is studied by measuring the second diagonal element [Formula: see text] of spin density matrix. The spin density matrix element [Formula: see text] is obtained by measuring the angular distribution of vector meson decay daughter with respect to the quantization axis in vector meson rest frame. Measured [Formula: see text] values for vector mesons are found to be larger than [Formula: see text] at high momentum in [Formula: see text] collisions at LEP energies, suggesting the preferential production of vector meson with helicity zero state from the fragmentation process. The [Formula: see text] values are found to be smaller than [Formula: see text] ([Formula: see text] implies no spin alignment) for [Formula: see text] and [Formula: see text] vector mesons at low transverse momentum in Pb–Pb collisions at [Formula: see text] TeV. These observations are qualitatively consistent with the expectation from models which attribute the spin alignment effect due to polarization of quarks in the presence of large initial angular momentum in noncentral heavy-ion collisions and its subsequent hadronization by the process of recombination. No significant spin alignment effect is observed for [Formula: see text] [Formula: see text] in mid-central Pb–Pb collisions and for vector mesons in [Formula: see text] collisions. However, the preliminary results of [Formula: see text] for [Formula: see text] mesons are larger than [Formula: see text] at intermediate [Formula: see text] in Au–Au collisions at RHIC energies and can be attributed to the presence of [Formula: see text] meson field. Although there is evidence of spin alignment effect of vector mesons in heavy-ion collisions but the measured effect is surprisingly larger in context of hyperon polarization. Therefore, these results will trigger further theoretical study.


2021 ◽  
Vol 104 (18) ◽  
Author(s):  
Youhei Iida ◽  
Masashi Sawada ◽  
Yoshiaki Sasaki ◽  
Tomoaki Tsuchiya ◽  
Takaaki Minamidate ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Masaru Hongo ◽  
Xu-Guang Huang ◽  
Matthias Kaminski ◽  
Mikhail Stephanov ◽  
Ho-Ung Yee

Abstract Using the second law of local thermodynamics and the first-order Palatini formalism, we formulate relativistic spin hydrodynamics for quantum field theories with Dirac fermions, such as QED and QCD, in a torsionful curved background. We work in a regime where spin density, which is assumed to relax much slower than other non-hydrodynamic modes, is treated as an independent degree of freedom in an extended hydrodynamic description. Spin hydrodynamics in our approach contains only three non-hydrodynamic modes corresponding to a spin vector, whose relaxation time is controlled by a new transport coefficient: the rotational viscosity. We study linear response theory and observe an interesting mode mixing phenomenon between the transverse shear and the spin density modes. We propose several field-theoretical ways to compute the spin relaxation time and the rotational viscosity, via the Green-Kubo formula based on retarded correlation functions.


2021 ◽  
Vol 77 (6) ◽  
pp. 509-518
Author(s):  
Keenan Lyon ◽  
Jan Rusz

The multislice method, which simulates the propagation of the incident electron wavefunction through a crystal, is a well established method for analysing the multiple scattering effects that an electron beam may undergo. The inclusion of magnetic effects into this method proves crucial towards simulating enhanced magnetic interaction of vortex beams with magnetic materials, calculating magnetic Bragg spots or searching for magnon signatures, to name a few examples. Inclusion of magnetism poses novel challenges to the efficiency of the multislice method for larger systems, especially regarding the consistent computation of magnetic vector potentials A and magnetic fields B over large supercells. This work presents a tabulation of parameterized magnetic (PM) values for the first three rows of transition metal elements computed from atomic density functional theory (DFT) calculations, allowing for the efficient computation of approximate A and B across large crystals using only structural and magnetic moment size and direction information. Ferromagnetic b.c.c. (body-centred cubic) Fe and tetragonal FePt are chosen to showcase the performance of PM values versus directly obtaining A and B from the unit-cell spin density by DFT. The magnetic fields of b.c.c. Fe are well described by the PM approach while for FePt the PM approach is less accurate due to deformations in the spin density. Calculations of the magnetic signal, namely the change due to A and B of the intensity of diffraction patterns, show that the PM approach for both b.c.c. Fe and FePt is able to describe the effects of magnetism in these systems to a good degree of accuracy.


Sign in / Sign up

Export Citation Format

Share Document