spin density wave
Recently Published Documents


TOTAL DOCUMENTS

1169
(FIVE YEARS 61)

H-INDEX

63
(FIVE YEARS 4)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daichi Kurebayashi ◽  
Naoto Nagaosa

AbstractEmergent electromagnetism in magnets originates from the strong coupling between conduction electron spins and those of noncollinear ordered moments and the consequent Berry phase. This offers possibilities to develop new functions of quantum transport and optical responses. The emergent inductance in spiral magnets is an example recently proposed and experimentally demonstrated, using the emergent electric field induced by alternating currents. However, the microscopic theory of this phenomenon is missing, which should reveal factors to determine the magnitude, sign, frequency dependence, and nonlinearity of the inductance L. Here we theoretically study electromagnetic responses of spiral magnets by taking into account their collective modes. In sharp contrast to collinear spin-density wave, the system remains metallic even in one dimension, and the canonical conjugate relation of uniform magnetization and phason coordinate plays an essential role, determining the properties of L. This result opens a way to design the emergent inductance of desired properties.


Author(s):  
Xinhui Zhan ◽  
Xiaolei Yi ◽  
Xiangzhuo Xing ◽  
Meng Li ◽  
Linchao Yu ◽  
...  

Abstract The recently discovered 112-type EuFeAs2 compound that shows complex Eu-spin magnetism provides a new platform to study the interplay between superconductivity (SC) and magnetism in iron pnictide superconductors. In this paper, by substituting Fe with the 4d transition metal Pd, we have successfully synthesized a series of EuFe1-xPdxAs2 (0 ≤ x ≤ 0.08) samples and studied the doping effect on SC and magnetism by means of electrical transport and magnetization measurements. The systematic evolution of the lattice parameters indicates that the Pd atoms have been successfully substituted into the Fe sites. With Pd doping, the Fe-related spin density wave (SDW) transition at TFe m in the parent phase is rapidly suppressed, and SC simultaneously emerges, exhibiting a domelike shape with a maximum onset transition temperature Tonset c of around 18.5 K at x = 0.04. On the other hand, the Eu-related AFM order at TEu m is suppressed very slowly and persists up to x = 0.08, covering the whole SC dome region. Also, the reentrant spin-glass and spin-reorientation transitions below TEu m remain unchanged with Pd doping. All these results indicate that the Eu spins have little effect on SC in EuFe1-xPdxAs2. Finally, based on the resistivity and magnetization data, the T-x phase diagram of EuFe1-xPdxAs2 is constructed and compared with those of 3d transition metals Co/Ni and La doped ones.


2021 ◽  
Vol 6 (4) ◽  
pp. 45
Author(s):  
Gaetano Campi ◽  
Antonio Bianconi ◽  
Alessandro Ricci

While spin striped phases in La2−xSrxNiO4+y for 0.25 < x < 0.33 are the archetypal case of a 1D spin density wave (SDW) phase in doped antiferromagnetic strongly correlated perovskites, few information is available on the SDW spatial organization. In this context, we have measured the spatial variation of the wave vector of the SDW reflection profile by scanning micro X-ray diffractions with a coherent beam. We obtained evidence of a SDW order–disorder transition by lowering a high temperature phase (T > 50 K) to a low temperature phase (T < 50 K). We have identified quasi-commensurate spin stripe puddles in the ordered phase at 50 < T < 70 K, while the low temperature spin glassy phase presents a nanoscale phase separation of T = 30 K, with the coexistence of quasi-commensurate and incommensurate spin stripe puddles assigned to the interplay of quantum frustration and strong electronic correlations.


2021 ◽  
Vol 104 (18) ◽  
Author(s):  
Youhei Iida ◽  
Masashi Sawada ◽  
Yoshiaki Sasaki ◽  
Tomoaki Tsuchiya ◽  
Takaaki Minamidate ◽  
...  

Author(s):  
Andrey Azarevich ◽  
Vladimir Glushkov ◽  
Sergey Demishev ◽  
Aleksey Bogach ◽  
Valerii Voronov ◽  
...  

Abstract Precise angle-resolved magnetoresistance (ARMR) and magnetization measurements have revealed (i) strong charge transport and magnetic anisotropy and (ii) emergence of a huge number of magnetic phases in the ground state of isotopicaly 11B-enriched single crystals of TmB12 antiferromagnetic (AF) metal with fcc crystal structure and dynamic charge stripes. We analyze for the first time the angular H-φ phase diagrams of AF state of Tm11B12 reconstructed from experimental ARMR and magnetization data arguing that the symmetry lowering leads to the appearance of several radial phase boundaries between different phases in the AF state. It is proposed that the suppression of the indirect Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange along 〈110〉 directions between nearest neighboring magnetic moments of Tm3+ ions and subsequent redistribution of conduction electrons to quantum fluctuations of the electron density (dynamic stripes) are the main factors responsible for the anisotropy. Essential (more than 25 % at T = 2 K) anisotropy of the Neel field in the (110) plane was found in Tm11B12 unlike to isotropic AF-P boundary in the H-φ phase diagrams of Ho11B12. Magnetoresistance components are discussed in terms of charge carrier scattering on the spin density wave, itinerant ferromagnetic nano-domains and on-site Tm3+ spin fluctuations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. Lester ◽  
S. Ramos ◽  
R. S. Perry ◽  
T. P. Croft ◽  
M. Laver ◽  
...  

AbstractWhen the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a $$T\,{{{{{{\mathrm{log}}}}}}}\,(1/T)$$ T log ( 1 / T ) electronic heat capacity behaviour of strange metals. However, these behaviours have not been related to any critical fluctuations. Here we use inelastic neutron scattering to reveal the presence of collective spin fluctuations whose relaxation time and strength show a nearly singular variation with magnetic field as Bc is approached. The large increase in the electronic heat capacity and entropy near Bc can be understood quantitatively in terms of the scattering of conduction electrons by these spin-fluctuations. On entering the spin-density-wave ordered phase present near Bc, the fluctuations become stronger suggesting that the order is stabilised through an “order-by-disorder” mechanism.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Nishal Rai

Abstract D2-D8 model admits a numerical solution that corresponds to a charge density wave and a spin density wave. Considering that as the background, we numerically solve the Dirac equation for probe fermions. From the solution, we obtain the Green’s function and study the behaviour of the spectral density. We begin with generic fermions and have studied the formation of the Fermi surface and where it develops a gap. In addition, we have incorporated an ionic lattice and study its effect on the Fermi surface. Then we analysed the worldvolume fermions. In this particular model we do not find Fermi surface for the dual operators.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
S. V. Kokanova ◽  
P. A. Maksimov ◽  
A. V. Rozhkov ◽  
A. O. Sboychakov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Meinero ◽  
P. Bonfà ◽  
I. J. Onuorah ◽  
S. Sanna ◽  
R. De Renzi ◽  
...  

AbstractThe electronic ground state of iron-based materials is unusually sensitive to electronic correlations. Among others, its delicate balance is profoundly affected by the insertion of magnetic impurities in the FeAs layers. Here, we address the effects of Fe-to-Mn substitution in the non-superconducting Sm-1111 pnictide parent compound via a comparative study of SmFe$$_{1-x}$$ 1 - x Mn$$_{x}$$ x AsO samples with $$x(\text{Mn})=$$ x ( Mn ) = 0.05 and 0.10. Magnetization, Hall effect, and muon-spin spectroscopy data provide a coherent picture, indicating a weakening of the commensurate Fe spin-density-wave (SDW) order, as shown by the lowering of the SDW transition temperature $$T_\text{SDW}$$ T SDW with increasing Mn content, and the unexpected appearance of another magnetic order, occurring at $$T^{*} \approx 10$$ T ∗ ≈ 10 and 20 K for $$x=0.05$$ x = 0.05 and 0.10, respectively. We attribute the new magnetic transition at $$T^{*}$$ T ∗ , occurring well inside the SDW phase, to a reorganization of the Fermi surface due to Fe-to-Mn substitutions. These give rise to enhanced magnetic fluctuations along the incommensurate wavevector $$\varvec{Q}_2 =(\pi \pm \delta ,\pi \pm \delta )$$ Q 2 = ( π ± δ , π ± δ ) , further increased by the RKKY interactions among Mn impurities.


Sign in / Sign up

Export Citation Format

Share Document