scholarly journals A new approach to overcome the imbalance in three-phase systems using the new proposed fractional-polynomial functions

Author(s):  
V Q Sy
Author(s):  
Q. S. Vu ◽  
Bui Vu Minh ◽  
Minh Tran ◽  
N.V. Korovkin

Non-linear loads or load imbalances, etc., are the typical causes of asymmetric operation of three-phase systems. The appearance of inverse (positive) and homopolar (zero) symmetric components cause damage to the systems and electrical equipment and increase the power losses on the transmission lines. Reactive power compensation is one of the solutions that can overcome this asymmetry. The difficulty that exists in many different methods is the optimal calculation of the value of the compensator. In this paper, a new method to overcome these problems is proposed and investigagted. The proposed method is based on the fundamental electrical quantities (voltages and currents) on the controllable values of the static compensation devices and overcoming of the asymmetric operation regime in the three-phase systems.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1259
Author(s):  
Francisco G. Montoya ◽  
Raúl Baños ◽  
Alfredo Alcayde ◽  
Francisco Manuel Arrabal-Campos ◽  
Javier Roldán Roldán Pérez

This paper presents a new framework based on geometric algebra (GA) to solve and analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The proposed approach is an exploratory application of the geometric algebra power theory (GAPoT) to multiple-phase systems. A definition of geometric apparent power for three-phase systems, that complies with the energy conservation principle, is also introduced. Power calculations are performed in a multi-dimensional Euclidean space where cross effects between voltage and current harmonics are taken into consideration. By using the proposed framework, the current can be easily geometrically decomposed into active- and non-active components for current compensation purposes. The paper includes detailed examples in which electrical circuits are solved and the results are analysed. This work is a first step towards a more advanced polyphase proposal that can be applied to systems under real operation conditions, where unbalance and asymmetry is considered.


Sign in / Sign up

Export Citation Format

Share Document