scholarly journals Combinatorial representation theory of Lie algebras. Richard Stanley’s work and the way it was continued

Author(s):  
Cristian Lenart
2010 ◽  
pp. 799-882
Author(s):  
Christine Bessenrodt ◽  
Francesco Brenti ◽  
Alexander Kleshchev ◽  
Arun Ram

A few years ago the 'hidden symmetries’ of the soliton equations had been identified as affine Lie groups, also known as loop groups. The first extensive use of the representation theory of affine Lie algebras for the soliton equations have been developed in a series of works by mathematicians of the Kyoto school. We will review some of their results and develop them further on the basis of the representation theory. Thus an orbit of the simplest affine Lie group SL(2, C)^ in the fundamental representation V will provide the solutions of the Korteweg-de Vries equation, and similarly the solutions of the sine-Gordon equation will come from an orbit of the group (SL(2, C) x SL(2, C)) ^ in V x V*.


2012 ◽  
Vol 19 (02) ◽  
pp. 359-410 ◽  
Author(s):  
Raphaël Rouquier

We provide an introduction to the 2-representation theory of Kac-Moody algebras, starting with basic properties of nil Hecke algebras and quiver Hecke algebras, and continuing with the resulting monoidal categories, which have a geometric description via quiver varieties, in certain cases. We present basic properties of 2-representations and describe simple 2-representations, via cyclotomic quiver Hecke algebras, and through microlocalized quiver varieties.


2001 ◽  
Vol 03 (04) ◽  
pp. 533-548 ◽  
Author(s):  
NAIHUAN JING ◽  
KAILASH C. MISRA ◽  
CARLA D. SAVAGE

Basil Gordon, in the sixties, and George Andrews, in the seventies, generalized the Rogers–Ramanujan identities to higher moduli. These identities arise in many areas of mathematics and mathematical physics. One of these areas is representation theory of infinite dimensional Lie algebras, where various known interpretations of these identities have led to interesting applications. Motivated by their connections with Lie algebra representation theory, we give a new interpretation of a sum related to generalized Rogers–Ramanujan identities in terms of multi-color partitions.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Thomas Bliem ◽  
Dido Salazar

International audience Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950) and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras. Stanley (1986) a montré que chaque ensemble fini partiellement ordonné permet de définir deux polyèdres, le polyèdre de l'ordre et le polyèdre des cha\^ınes. Ces polyèdres ont le même polynôme de Ehrhart, bien qu'ils soient tout à fait distincts du point de vue combinatoire. On généralise ce résultat à une famille plus générale de polyèdres, construits à partir d'un ensemble partiellement ordonné ayant des entiers attachés à certains de ses éléments. Par cette construction, on explique en termes combinatoires la relation entre les polyèdres de Gelfand-Tsetlin (1950) et ceux de Feigin-Fourier-Littelmann-Vinberg (2010, 2005), qui apparaissent dans la théorie des représentations des algèbres de Lie linéaires spéciales. On utilise les polyèdres de Gelfand-Tsetlin généralisés par Berenstein et Zelevinsky (1989) afin d'obtenir des analogues (conjecturés) des polytopes de Feigin-Fourier-Littelmann-Vinberg pour les algèbres de Lie symplectiques et orthogonales impaires.


Sign in / Sign up

Export Citation Format

Share Document