ehrhart polynomial
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Luis Ferroni

AbstractWe provide a formula for the Ehrhart polynomial of the connected matroid of size n and rank k with the least number of bases, also known as a minimal matroid. We prove that their polytopes are Ehrhart positive and $$h^*$$ h ∗ -real-rooted (and hence unimodal). We prove that the operation of circuit-hyperplane relaxation relates minimal matroids and matroid polytopes subdivisions, and also preserves Ehrhart positivity. We state two conjectures: that indeed all matroids are $$h^*$$ h ∗ -real-rooted, and that the coefficients of the Ehrhart polynomial of a connected matroid of fixed rank and cardinality are bounded by those of the corresponding minimal matroid and the corresponding uniform matroid.


10.37236/7780 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Gábor Hegedüs ◽  
Akihiro Higashitani ◽  
Alexander Kasprzyk

Recent work has focused on the roots $z\in\mathbb{C}$ of the Ehrhart polynomial of a lattice polytope $P$. The case when $\Re{z}=-1/2$ is of particular interest: these polytopes satisfy Golyshev's "canonical line hypothesis". We characterise such polytopes when $\mathrm{dim}(P)\leq 7$. We also consider the "half-strip condition", where all roots $z$ satisfy $-\mathrm{dim}(P)/2\leq\Re{z}\leq \mathrm{dim}(P)/2-1$, and show that this holds for any reflexive polytope with $\mathrm{dim}(P)\leq 5$. We give an example of a $10$-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi–Shibata in dimension $34$.


Author(s):  
Philip B. Zhang

AbstractFixing a positive integer r and $0 \les k \les r-1$, define $f^{\langle r,k \rangle }$ for every formal power series f as $ f(x) = f^{\langle r,0 \rangle }(x^r)+xf^{\langle r,1 \rangle }(x^r)+ \cdots +x^{r-1}f^{\langle r,r-1 \rangle }(x^r).$ Jochemko recently showed that the polynomial $U^{n}_{r,k}\, h(x) := ( (1+x+\cdots +x^{r-1})^{n} h(x) )^{\langle r,k \rangle }$ has only non-positive zeros for any $r \ges \deg h(x) -k$ and any positive integer n. As a consequence, Jochemko confirmed a conjecture of Beck and Stapledon on the Ehrhart polynomial $h(x)$ of a lattice polytope of dimension n, which states that $U^{n}_{r,0}\,h(x)$ has only negative, real zeros whenever $r\ges n$. In this paper, we provide an alternative approach to Beck and Stapledon's conjecture by proving the following general result: if the polynomial sequence $( h^{\langle r,r-i \rangle }(x))_{1\les i \les r}$ is interlacing, so is $( U^{n}_{r,r-i}\, h(x) )_{1\les i \les r}$. Our result has many other interesting applications. In particular, this enables us to give a new proof of Savage and Visontai's result on the interlacing property of some refinements of the descent generating functions for coloured permutations. Besides, we derive a Carlitz identity for refined coloured permutations.


2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .


2019 ◽  
Vol 10 (1) ◽  
pp. 27-63 ◽  
Author(s):  
Loïc Foissy

Abstract To any poset or quasi-poset is attached a lattice polytope, whose Ehrhart polynomial we study from a Hopf-algebraic point of view. We use for this two interacting bialgebras on quasi-posets. The Ehrhart polynomial defines a Hopf algebra morphism with values in \mathbb{Q}[X] . We deduce from the interacting bialgebras an algebraic proof of the duality principle, a generalization and a new proof of a result on B-series due to Whright and Zhao, using a monoid of characters on quasi-posets, and a generalization of Faulhaber’s formula. We also give non-commutative versions of these results, where polynomials are replaced by packed words. We obtain, in particular, a non-commutative duality principle.


10.37236/7322 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jang Soo Kim ◽  
U-Keun Song

Recently, Chapoton found a $q$-analog of Ehrhart polynomials, which are polynomials in $x$ whose coefficients are rational functions in $q$. Chapoton conjectured the shape of the Newton polygon of the numerator of the $q$-Ehrhart polynomial of an order polytope. In this paper, we prove Chapoton's conjecture.


2018 ◽  
Vol 60 (3) ◽  
pp. 698-719 ◽  
Author(s):  
Kolja Knauer ◽  
Leonardo Martínez-Sandoval ◽  
Jorge Luis Ramírez Alfonsín

10.37236/6624 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Johannes Hofscheier ◽  
Benjamin Nill ◽  
Dennis Öberg

The Ehrhart polynomial of a lattice polygon $P$ is completely determined by the pair $(b(P),i(P))$ where $b(P)$ equals the number of lattice points on the boundary and $i(P)$ equals the number of interior lattice points. All possible pairs $(b(P),i(P))$ are completely described by a theorem due to Scott. In this note, we describe the shape of the set of pairs $(b(T),i(T))$ for lattice triangles $T$ by finding infinitely many new Scott-type inequalities.


10.37236/5815 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Christian Haase ◽  
Martina Juhnke-Kubitzke ◽  
Raman Sanyal ◽  
Thorsten Theobald

For lattice polytopes $P_1,\ldots, P_k \subseteq \mathbb{R}^d$, Bihan (2016) introduced the discrete mixed volume $DMV(P_1,\dots,P_k)$ in analogy to the classical mixed volume.  In this note we study the associated mixed Ehrhart polynomial $ME_{P_1, \dots,P_k}(n) = DMV(nP_1, \dots, nP_k)$.  We provide a characterization of all mixed Ehrhart coefficients in terms of the classical multivariate Ehrhart polynomial. Bihan (2016) showed that the discrete mixed volume is always non-negative. Our investigations yield simpler proofs for certain special cases.We also introduce and study the associated mixed $h^*$-vector. We show that for large enough dilates $r  P_1, \ldots, rP_k$ the corresponding mixed $h^*$-polynomial has only real roots and as a consequence  the mixed $h^*$-vector becomes non-negative. 


Sign in / Sign up

Export Citation Format

Share Document