Intertwining maps between 𝑝-adic principal series of 𝑝-adic groups
In this paper we study p p -adic principal series representation of a p p -adic group G G as a module over the maximal compact subgroup G 0 G_0 . We show that there are no non-trivial G 0 G_0 -intertwining maps between principal series representations attached to characters whose restrictions to the torus of G 0 G_0 are distinct, and there are no non-scalar endomorphisms of a fixed principal series representation. This is surprising when compared with another result which we prove: that a principal series representation may contain infinitely many closed G 0 G_0 -invariant subspaces. As for the proof, we work mainly in the setting of Iwasawa modules, and deduce results about G 0 G_0 -representations by duality.