whittaker functions
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
T. M. Dunster

Uniform asymptotic expansions are derived for Whittaker’s confluent hypergeometric functions M κ , μ ( z ) and W κ , μ ( z ) , as well as the numerically satisfactory companion function W − κ , μ ( z   e − π i ) . The expansions are uniformly valid for μ → ∞ , 0 ≤ κ / μ ≤ 1 − δ < 1 and 0 ≤ arg ⁡ ( z ) ≤ π . By using appropriate connection and analytic continuation formulae, these expansions can be extended to all unbounded non-zero complex z . The approximations come from recent asymptotic expansions involving elementary functions and Airy functions, and explicit error bounds are either provided or available.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Siddhartha Sahi ◽  
Jasper V. Stokman ◽  
Vidya Venkateswaran

AbstractWe construct a family of representations of affine Hecke algebras, which depend on a number of auxiliary parameters $$g_i$$ g i , and which we refer to as metaplectic representations. We realize these representations as quotients of certain parabolically induced modules, and we apply the method of Baxterization (localization) to obtain actions of corresponding Weyl groups on rational functions on the torus. Our construction both generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and Puskas, which had depended on a crucial computer verification. A key motivation is that when the parameters $$g_i$$ g i are specialized to certain Gauss sums, the resulting representation and its localization arise naturally in the consideration of p-parts of Weyl group multiple Dirichlet series. In this special case, similar results have been previously obtained in the literature by the study of Iwahori Whittaker functions for principal series of metaplectic covers of reductive p-adic groups. However this technique is not available for generic parameters $$g_i$$ g i . It turns out that the metaplectic representations can be extended to the double affine Hecke algebra, where they share many important properties with Cherednik’s basic polynomial representation, which they generalize. This allows us to introduce families of metaplectic polynomials, which depend on the $$g_i$$ g i , and which generalize Macdonald polynomials. In this paper we discuss in some detail the situation for type A, which is of considerable interest in algebraic combinatorics. We postpone some of the proofs, as well as a discussion of other types, to the sequel.


2021 ◽  
Vol 194 (4) ◽  
pp. 657-685
Author(s):  
Edgar Assing ◽  
Andrew Corbett

AbstractWe consider the Fourier expansion of a Hecke (resp. Hecke–Maaß) cusp form of general level N at the various cusps of $$\Gamma _{0}(N)\backslash \mathbb {H}$$ Γ 0 ( N ) \ H . We explain how to compute these coefficients via the local theory of p-adic Whittaker functions and establish a classical Voronoï summation formula allowing an arbitrary additive twist. Our discussion has applications to bounding sums of Fourier coefficients and understanding the (generalised) Atkin–Lehner relations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Parvez Alam ◽  
Suprava Jena ◽  
Irfan Anjum Badruddin ◽  
Tatagar Mohammad Yunus Khan ◽  
Sarfaraz Kamangar

Purpose This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and damped velocity profiles of the wave. For numerical computation purposes, water-saturated limestone and kerosene oil saturated sandstone for the first and second porous strips, respectively. Some other peculiarities have been observed and discussed. Design/methodology/approach Dispersion and attenuation characteristic of the shear wave propagations have been studied in an inhomogeneous poro-anelastic strip of finite thickness, which is clamped between an inhomogeneous poroelastic strip of finite thickness and an elastic half-space. Both the strips are initially stressed and the half-space is self-weighted. Analytical methods are used to calculate the interior deformations of the model with the involvement of special functions. The determination of the frequency equation, which includes the Bessel’s and Whittaker functions, has been obtained using the prescribed boundary conditions. Findings Impacts of attenuation coefficient, dissipation factor, inhomogeneities, initial stresses, Biot’s gravity, porosity and thickness ratio parameters on the velocity profile of the wave have been demonstrated through the graphical visuals. These parameters are playing an important role and working as a catalyst in affecting the propagation behaviour of the wave. Originality/value Inclusion of the concept of doubly layered initially stressed inhomogeneous porous structure of elastic and anelastic medium bedded over a self-weighted half-space medium brings a novelty to the existing literature related to the study of shear wave. It may be helpful to geologists, seismologists and structural engineers in the development of theoretical and practical studies.


2020 ◽  
Vol 380 (2) ◽  
pp. 535-579
Author(s):  
Ben Brubaker ◽  
Valentin Buciumas ◽  
Daniel Bump ◽  
Henrik P. A. Gustafsson

2020 ◽  
Vol 54 (4) ◽  
pp. 1111-1138 ◽  
Author(s):  
Hélène Barucq ◽  
Florian Faucher ◽  
Ha Pham

In this paper, we study the time-harmonic scalar equation describing the propagation of acoustic waves in the Sun’s atmosphere under ideal atmospheric assumptions. We use the Liouville change of unknown to conjugate the original problem to a Schrödinger equation with a Coulomb-type potential. This transformation makes appear a new wavenumber, k, and the link with the Whittaker’s equation. We consider two different problems: in the first one, with the ideal atmospheric assumptions extended to the whole space, we construct explicitly the Schwartz kernel of the resolvent, starting from a solution given by Hostler and Pratt in punctured domains, and use this to construct outgoing solutions and radiation conditions. In the second problem, we construct exact Dirichlet-to-Neumann map using Whittaker functions, and new radiation boundary conditions (RBC), using gauge functions in terms of k. The new approach gives rise to simpler RBC for the same precision compared to existing ones. The robustness of our new RBC is corroborated by numerical experiments.


2020 ◽  
Vol 32 (1) ◽  
pp. 207-233
Author(s):  
Yuanqing Cai

AbstractFor a Brylinski–Deligne covering group of a general linear group, we calculate some values of unramified Whittaker functions for certain representations that are analogous to the theta representations.


Sign in / Sign up

Export Citation Format

Share Document