scholarly journals Eigenvalues of Random Matrices in the General Linear Group in the Large-$N$ Limit

2019 ◽  
Vol 66 (04) ◽  
pp. 1
Author(s):  
Brian C. Hall
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ivan Matić

AbstractLet {G_{n}} denote either the group {\mathrm{SO}(2n+1,F)} or {\mathrm{Sp}(2n,F)} over a non-archimedean local field of characteristic different than two. We study parabolically induced representations of the form {\langle\Delta\rangle\rtimes\sigma}, where {\langle\Delta\rangle} denotes the Zelevinsky segment representation of the general linear group attached to the segment Δ, and σ denotes a discrete series representation of {G_{n}}. We determine the composition series of {\langle\Delta\rangle\rtimes\sigma} in the case when {\Delta=[\nu^{a}\rho,\nu^{b}\rho]} where a is half-integral.


2015 ◽  
Vol 469 ◽  
pp. 169-203 ◽  
Author(s):  
Seyed Hassan Alavi ◽  
John Bamberg ◽  
Cheryl E. Praeger

1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


Sign in / Sign up

Export Citation Format

Share Document