linear groups
Recently Published Documents


TOTAL DOCUMENTS

1356
(FIVE YEARS 120)

H-INDEX

34
(FIVE YEARS 2)

Author(s):  
Kei Yuen Chan

Abstract We prove a local Gan–Gross–Prasad conjecture on predicting the branching law for the non-tempered representations of general linear groups in the case of non-Archimedean fields. We also generalize to Bessel and Fourier–Jacobi models and study a possible generalization to Ext-branching laws.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lam Pham ◽  
Xin Zhang

Abstract Let S ⊂ GL n ⁢ ( Z ) S\subset\mathrm{GL}_{n}(\mathbb{Z}) be a finite symmetric set. We show that if the Zariski closure of Γ = ⟨ S ⟩ \Gamma=\langle S\rangle is a product of special linear groups or a special affine linear group, then the diameter of the Cayley graph Cay ⁡ ( Γ / Γ ⁢ ( q ) , π q ⁢ ( S ) ) \operatorname{Cay}(\Gamma/\Gamma(q),\pi_{q}(S)) is O ⁢ ( log ⁡ q ) O(\log q) , where 𝑞 is an arbitrary positive integer, π q : Γ → Γ / Γ ⁢ ( q ) \pi_{q}\colon\Gamma\to\Gamma/\Gamma(q) is the canonical projection induced by the reduction modulo 𝑞, and the implied constant depends only on 𝑆.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dongwen Liu ◽  
Feng Su ◽  
Binyong Sun

Abstract We prove that the local Rankin–Selberg integrals for principal series representations of the general linear groups agree with certain simple integrals over the Rankin–Selberg subgroups, up to certain constants given by the local gamma factors.


Author(s):  
Z. Bácskai ◽  
D. L. Flannery ◽  
E. A. O’Brien

Let [Formula: see text] be a prime and let [Formula: see text] be the complex field. We explicitly classify the finite solvable irreducible monomial subgroups of [Formula: see text] up to conjugacy. That is, we give a complete and irredundant list of [Formula: see text]-conjugacy class representatives as generating sets of monomial matrices. Copious structural information about non-solvable finite irreducible monomial subgroups of [Formula: see text] is also proved, enabling a classification of all such groups bar one family. We explain the obstacles in that exceptional case. For [Formula: see text], we classify all finite irreducible subgroups of [Formula: see text]. Our classifications are available publicly in Magma.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Fix $\mathbb Z/2$ is the prime field of two elements and write $\mathcal A_2$ for the mod $2$ Steenrod algebra. Denote by $GL_d:= GL(d, \mathbb Z/2)$ the general linear group of rank $d$ over $\mathbb Z/2$ and by $\mathscr P_d$ the polynomial algebra $\mathbb Z/2[x_1, x_2, \ldots, x_d],$ which is viewed as a connected unstable $\mathcal A_2$-module on $d$ generators of degree one. We study the Peterson "hit problem" of finding the minimal set of $\mathcal A_2$-generators for $\mathscr P_d.$ It is equivalent to determining a $\mathbb Z/2$-basis for the space of "cohits"$$Q\mathscr P_d := \mathbb Z/2\otimes_{\mathcal A_2} \mathscr P_d \cong \mathscr P_d/\mathcal A_2^+\mathscr P_d.$$ This $Q\mathscr P_d$ is considered as a form modular representation of $GL_d$ over $\mathbb Z/2.$ The problem for $d= 5$ is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree $n = r(2^t -1) + 2^ts$ with $r = d = 5,\ s =8$ and $t$ an arbitrary non-negative integer. An application of this study to the cases $t = 0$ and $t = 1$ shows that the Singer algebraic transfer is an isomorphism in the bidegrees $(5, 5+(13.2^{0} - 5))$ and $(5, 5+(13.2^{1} - 5)).$ Moreover, the result when $t\geq 2$ was also discussed. Here, the Singer transfer of rank $d$ is a $\mathbb Z/2$-algebra homomorphism from $GL_d$-coinvariants of certain subspaces of $Q\mathscr P_d$ to the cohomology groups of the Steenrod algebra, ${\rm Ext}_{\mathcal A_2}^{d, d+*}(\mathbb Z/2, \mathbb Z/2).$ It is one of the useful tools for studying mysterious Ext groups and the Kervaire invariant one problem.


Author(s):  
Pietro Corvaja ◽  
Andrei S. Rapinchuk ◽  
Jinbo Ren ◽  
Umberto M. Zannier
Keyword(s):  

2021 ◽  
Vol 25 (22) ◽  
pp. 644-678
Author(s):  
Maxim Gurevich ◽  
Erez Lapid

We construct new “standard modules” for the representations of general linear groups over a local non-archimedean field. The construction uses a modified Robinson–Schensted–Knuth correspondence for Zelevinsky’s multisegments. Typically, the new class categorifies the basis of Doubilet, Rota, and Stein (DRS) for matrix polynomial rings, indexed by bitableaux. Hence, our main result provides a link between the dual canonical basis (coming from quantum groups) and the DRS basis.


Sign in / Sign up

Export Citation Format

Share Document