scholarly journals Ulrich bundles on Brauer-Severi varieties

Author(s):  
Saša Novaković
Keyword(s):  
2011 ◽  
Vol 271 (3-4) ◽  
pp. 953-960 ◽  
Author(s):  
Ciro Ciliberto ◽  
Thomas Dedieu
Keyword(s):  

1986 ◽  
Vol 54 (1) ◽  
pp. 113-127 ◽  
Author(s):  
F L Zak
Keyword(s):  

Author(s):  
Xi Chen

Continuing the work of Chiantini and Ciliberto (1999) on the Severi varieties of curves on surfaces inℙ3, we complete the proof of the existence of regular components for such varieties.


1990 ◽  
Vol 42 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Ming-Chang Kang

Let k be any field, A a central simple k-algebra of degree m (i.e., dimk A = m2). Several methods of constructing the generic splitting fields for A are proposed and Saltman proves that these methods result in almost the same generic splitting field [8, Theorems 4.2 and 4.4]. In fact, the generic splitting field constructed by Roquette [7] is the function field of the Brauer- Severi variety Vm(A) while the generic splitting field constructed by Heuser and Saltman [4 and 8] is the function field of the norm surface W(A). In this paper, to avoid possible confusion about the dimension, we shall call it the norm hypersurface instead of the norm surface.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9539-9558
Author(s):  
Armando Treibich

Abstract More than $40$ years ago I. Krichever developed the Theory of (vector) Baker–Akhiezer functions and devised a criterion for a $d$-marked compact Riemann surface to provide $d\times d$-matrix solutions to the KdV equation. Later on he also found a criterion for a $d$-marked curve to provide $d\times d$-matrix solutions to the Kadomtsev-Petviashvili (KP) equation, doubly periodic with respect to $x$, the 1st KP flow. In particular, when both criteria apply, one should obtain $d\times d$-matrix KdV elliptic solitons. It seems, however, that the latter issue has been completely neglected until very recently (cf. [10] where the $d=2$ case is treated). In this article we fix a complex elliptic curve $X=\mathbb{C}/\Lambda$, corresponding to a lattice $\Lambda \subset \mathbb{C}$, and define so-called hyperelliptic $d$-tangential covers as $d$-marked covers of $X$ satisfying a geometric condition inside their Jacobians. They satisfy Krichever’s criteria and give rise, therefore, to families of $d\times d$-matrix KdV elliptic solitons. We also construct an anticanonical rational surface ${\mathcal S}$ naturally attached to $X$, with a Picard group of rank $10$. It turns out that the former covers of $X$ correspond to rational irreducible curves in suitable divisor classes of ${\mathcal S}$. We thus reduce their construction to proving that the associated Severi Varieties (of rational irreducible nodal curves) are not empty. The final key to the problem consists in finding rational reducible nodal curves in the latter divisor classes that can be deformed to irreducible ones, according to A. Tannenbaum’s criterion (see [5]). At last we deduce, for any $d\geq 2$, infinite families (of arbitrary high genus and degree) of hyperelliptic $d$-tangential covers, giving rise to $d\times d$-matrix KdV elliptic solitons.


Sign in / Sign up

Export Citation Format

Share Document