geometric condition
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yunpeng Yao ◽  
Xiaoxia Chen ◽  
Jingzhong Xing ◽  
Liteng Shi ◽  
Yuqi Wang

AbstractDeformation of the flexspline is the basis of analyzing tooth trajectory and designing tooth profile. Considering the tooth influence on the position of equivalent neutral layer, a piecewise method for calculating the deformation of flexspline assembled with a cam wave generator is presented in this paper. Firstly, a mechanic model of a ring of uniform thickness in contact with a rigid cam is established. The displacements of the ring inside and outside an unknown wrapping angle are determined by the geometric constraints of the cam profile and the equilibrium relationship, respectively. Meanwhile, the wrapping angle is solved according to the boundary conditions. The assembly forces are derived to investigate the circumferential elongation and strain. Then, considering the tooth effects on the neutral layer of flexspline, the tooth is positioned on the equivalent neutral layer, which is the non-elongation layer within one gear pitch but offset from the geometric mid-layer. The equivalent neutral layer is positioned by the empirical formula of the offset ratio, which is summarized by the orthogonal simulation on finite element models of racks. Finally, finite element models of a ring-shaped and a cup-shaped flexspline assembled with elliptical cam are established to verify the effectiveness and accuracy of the piecewise method. The results show that, compared with the geometric method, the tooth positioning deviation calculated by the piecewise method can be reduced by about 70% with a more accurate deformation description from the geometric condition and mechanic condition inside and outside the wrapping angle.


2021 ◽  
Vol 38 (5) ◽  
pp. 1293-1307
Author(s):  
Rabah Hamdini ◽  
Nacira Diffellah ◽  
Abderrahmane Namane

In the last few years, there has been a lot of interest in making smart components, e.g. robots, able to simulate human capacity of object recognition and categorization. In this paper, we propose a new revolutionary approach for object categorization based on combining the HOG (Histograms of Oriented Gradients) descriptors with our two new descriptors, HOH (Histograms of Oriented Hue) and HOS (Histograms of Oriented Saturation), designed it in the HSL (Hue, Saturation and Luminance) color space and inspired by this famous HOG descriptor. By using the chrominance components, we have succeeded in making the proposed descriptor invariant to all lighting conditions changes. Moreover, the use of this oriented gradient makes our descriptor invariant to geometric condition changes including geometric and photometric transformation. Finally, the combination of color and gradient information increase the recognition rate of this descriptor and give it an exceptional performance compared to existing methods in the recognition of colored handmade objects with uniform background (98.92% for Columbia Object Image Library and 99.16% for the Amsterdam Library of Object Images). For the classification task, we propose the use of two strong and very used classifiers, SVM (Support Vector Machine) and KNN (k-nearest neighbors) classifiers.


2021 ◽  
Vol 99 ◽  
pp. 323-328
Author(s):  
Hiroki Ishizaka ◽  
Kenta Kobayashi ◽  
Ryo Suzuki ◽  
Takuya Tsuchiya

2021 ◽  
Vol 87 (8) ◽  
pp. 551-556
Author(s):  
Qinghong Sheng ◽  
Rui Ren ◽  
Weilan Xu ◽  
Hui Xiao ◽  
Bo Wang ◽  
...  

A star sensor is a high-precision satellite attitude measurement device. Since its observation information has only two-dimensional direction vectors, when a star sensor is used for attitude determination the dimension of the observation information is less than the number of attitude angles determined, so mainstream algorithms usually only guarantee the accuracy of the pitch angle and the roll angle. In view of the lack of depth information in the observation's imaging geometric condition, this article proposes a spinor-based attitude determination model, which describes a straight line passing through two stars with the spinor and maps the depth information of the straight line with the pitch, to establish an imaging geometry model of the spinor coplanar condition. Experiments show that the yaw-angle attitude accuracy of the method is an order of magnitude better than that of mainstream algorithms, and the accuracy of the three attitude angles reaches the arc-second level.


Author(s):  
Zai-Wei Li ◽  
Xiao-Zhou Liu ◽  
Si-Xin Chen

The reliability assessment of rail infrastructure is directly related to the safety and effectiveness of railway transportation and critical for railway management department. This paper presents an approach for service reliability analysis of slab track from the point of view of the vehicle-track system operational safety. The vehicle-track dynamics is simulated by the established finite element model (FEM) and the limit state function (LSF) is defined on the danger of derailment. To reflect the real state of track geometric condition, the track irregularity spectrums (TISs) are extracted from the measured track irregularity data and fitted by the seven-parameter formula. Then, a set of time series can be obtained from the TISs using a binary wavelet-based inversion method and then input to the FEM to obtain the value of LSF. Finally, Monte Carlo simulation (MCS) is used in the calculation of track reliability. To overcome the slow convergence of the vehicle-track models, this study develops a surrogate model based on support vector machine (SVM). It is validated that the established SVM can well approximate the relationship between the track irregularities to the derailment coefficients in terms of small error and high correlation. More importantly, the efficiency is more than 1000 times higher than traditional FEM. This is a pioneering study to incorporate vehicle-track dynamics into the reliability assessment of slab track in service. For a 1024-m section of slab track, results show that its reliability index can satisfy the requirement in specifications.


Author(s):  
Thomas Duyckaerts

We give a necessary and sufficient condition, of geometrical type, for the uniform decay of energy of solutions of the linear system of magnetoelasticity in a bounded domain with smooth boundary. A Dirichlet-type boundary condition is assumed. Our strategy is to use microlocal defect measures to show suitable observability inequalities on high-frequency solutions of the Lamé system.


2021 ◽  
pp. 1-21
Author(s):  
Marcelo M. Cavalcanti ◽  
Victor H. Gonzalez Martinez

In the present paper, we are concerned with the semilinear viscoelastic wave equation in an inhomogeneous medium Ω subject to two localized dampings. The first one is of the type viscoelastic and is distributed around a neighborhood ω of the boundary according to the Geometric Control Condition. The second one is a frictional damping and we consider it hurting the geometric condition of control. We show that the energy of the wave equation goes uniformly and exponentially to zero for all initial data of finite energy taken in bounded sets of finite energy phase-space.


Author(s):  
Fedor Nikolaevich Pritykin ◽  
Valeriy Ivanovich Nebritov

Linear surfaces are used in various spheres of human activity. One of the most common techniques of designing linear surfaces is based on the three directing curves. In some cases, one of these directing curves is not set, but rather replaced by some geometric condition imposed on the emerging surfaces, which can in form of a certain point correspondence established between the points of the rest two directing curves. The article reviews the example of designing such surfaces, which in an approximate form would restrict the zone that sets the permissible positions of links of the manipulator mechanism of certain given configuration in realization of permissible instantaneous states. The acquired linear surfaces underlie the algorithm for calculation of configurations, which do not intersect the restricted zone in case of a deadlock situation. The result of this research is the computer simulation of the motions of arm and torso mechanism of the Android robot using the obtained algorithm for calculation of configurations. The simulation of motion demonstrates that the use of linear surfaces in analysis of the relative position of the manipulator and restricted zones in the deadlock situations allows reducing the calculation time by 50-60 percent. Such reduction of calculation time is highly demanded in computer control of the arm and torso motions of the Android robot on a real time scale.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Qingxiang Meng ◽  
Yaping Zhao ◽  
Jian Cui ◽  
Tonghao Dou

Abstract The arc-toothed cylindrical worm has an arc tooth profile in a section, which may be the axial section, the normal section, or an offsetting plane of the worm helical surface. The meshing principle for a gearing containing such a worm is established. The normal vector of instantaneous contact line is determined in the natural frame and the meshing performance parameters are obtained without the help of the curvature parameters of the worm helical surface to ensure the established meshing principle is concise and practical. The numerical results show that the worm working length can be beyond half of the thread length and the meshing zone of the worm pair can cover most of the worm gear tooth surface. The instantaneous contact lines are uniformly distributed and the worm pair forms double-line contact. The numerical outcomes of the induced principal curvature show that the contact stress level between the teeth is higher in the middle of the worm gear tooth surface and near its dedendum. The forming condition of the lubricating oil film is poorer in the middle of the worm gear tooth surface and from addendum to dedendum as demonstrated by the numerical results of the sliding angle. The normal arc-toothed worm lathed by an offsetting cutter is recommended to apply in industry after various researches and analyses. The cutting geometric condition of the worm is investigated quantitatively. It is discovered that the rule of the cutter working relief angle changes along the cutting edge during lathing the worm.


2020 ◽  
Author(s):  
Tomasz Lipecki

Abstract The article concerns the method of architectural inventory of the historic, wooden church in Mnichów (southern Poland), built in the 18th century. During hundreds of years of operation, structural changes can be seen in it, as well as in objects located above mining operations. The article explains the principles of inventory and describes the applied method of laser scanning, starting from the design to the creation of a 3D solid model of the object, paying particular attention to the analysis based on the created point cloud. Thanks to them, the area and volumes of all rooms were determined, the verticality of columns supporting the church levels was assessed, the floor level and verticality of walls were determined, as well as the shape and level of the roof edges. Based on the research, it can be concluded that the church, as an example of a wooden religious monument, is in good condition. The detected deformations in this range do not have a destructive effect on the current state of the object, but it should be subjected to control measurements in a cyclical manner. The laser scanning method used allowed for a wide and accurate scope of the study of the geometry of the church structure, without the need to disorganize its equipment.


Sign in / Sign up

Export Citation Format

Share Document