the kdv equation
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 55)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Murat Polat ◽  
Ömer Oruç

In this work, we develop a novel method to obtain numerical solution of well-known Korteweg–de Vries (KdV) equation. In the novel method, we generate differentiation matrices for spatial derivatives of the KdV equation by using delta-shaped basis functions (DBFs). For temporal integration we use a high order geometric numerical integrator based on Lie group methods. This paper is a first attempt to combine DBFs and high order geometric numerical integrator for solving such a nonlinear partial differential equation (PDE) which preserves conservation laws. To demonstrate the performance of the proposed method we consider five test problems. We reckon [Formula: see text], [Formula: see text] and root mean square (RMS) errors and compare them with other results available in the literature. Besides the errors, we also monitor conservation laws of the KDV equation and we show that the method in this paper produces accurate results and preserves the conservation laws quite good. Numerical outcomes show that the present novel method is efficient and reliable for PDEs.


2021 ◽  
Vol 20 ◽  
pp. 387-398
Author(s):  
S. Y. Jamal ◽  
J. M. Manale

We investigate a case of the generalized Korteweg – De Vries Burgers equation. Our aim is to demonstrate the need for the application of further methods in addition to using Lie Symmetries. The solution is found through differential topological manifolds. We apply Lie’s theory to take the PDE to an ODE. However, this ODE is of third order and not easily solvable. It is through differentiable topological manifolds that we are able to arrive at a solution


Plasma ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 408-425
Author(s):  
Shatadru Chaudhuri ◽  
Asesh Roy Chowdhury

As strongly coupled quantum dusty plasma consisting of electrons and dust with the ions in the background is considered when there is a streaming of electrons. It is observed that the streaming gives rise to both the slow and fast modes of propagation. The nonlinear mode is then analyzed by the reductive perturbation approach, resulting in the KdV-equation. In the critical situation where non-linearity vanishes, the modified scaling results in the MKdV equation. It is observed that both the KdV and MKdV equations possess quasi-solitary wave solution, which not only has the character of a soliton but also has a periodic nature. Such type of solitons are nowadays called nanopteron solitons and are expressed in terms of cnoidal-type elliptic functions.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1254
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Sobia Sultana ◽  
Zakia Hammouch ◽  
Rasool Shah ◽  
...  

We put into practice relatively new analytical techniques, the Shehu decomposition method and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical solutions are presented in the form of a series with simple and straightforward components, and some aspects show an appropriate dependence on the values of the fractional-order derivatives that are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations provide broader applicability. It is also illustrated that the findings of the current methodology are in close harmony with the exact solutions. It is worth mentioning that the proposed methods are powerful and are some of the best procedures to tackle nonlinear fractional PDEs.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tahir Ayaz ◽  
Farhad Ali ◽  
Wali Khan Mashwani ◽  
Israr Ali Khan ◽  
Zabidin Salleh ◽  
...  

The Korteweg–de Vries (KdV) equation is a weakly nonlinear third-order differential equation which models and governs the evolution of fixed wave structures. This paper presents the analysis of the approximate symmetries along with conservation laws corresponding to the perturbed KdV equation for different classes of the perturbed function. Partial Lagrange method is used to obtain the approximate symmetries and their corresponding conservation laws of the KdV equation. The purpose of this study is to find particular perturbation (function) for which the number of approximate symmetries of perturbed KdV equation is greater than the number of symmetries of KdV equation so that explore something hidden in the system.


Author(s):  
Pierre Gaillard

We construct multi-parametric rational solutions to the KdV equation. For this, we use solutions in terms of exponentials depending on several parameters and take a limit when one of these parameters goes to 0. Here we present degenerate rational solutions and give a result without the presence of a limit as a quotient of polynomials depending on 3N parameters. We give the explicit expressions of some of these rational solutions.


Sign in / Sign up

Export Citation Format

Share Document