scholarly journals Global well-posedness below the ground state for the nonlinear Schrödinger equation with a linear potential

2020 ◽  
Vol 148 (12) ◽  
pp. 5193-5207
Author(s):  
Masaru Hamano ◽  
Masahiro Ikeda
2005 ◽  
Vol 02 (04) ◽  
pp. 919-962 ◽  
Author(s):  
FRANK MERLE ◽  
PIERRE RAPHAEL

We consider the L2 critical nonlinear Schrödinger equation [Formula: see text] in the energy space H1. In the series of papers [11–15,18], we studied finite time blow up solutions for which lim t↑T < + ∞ |∇ u(t)|L2 = + ∞ and proved classification results of the blow up dynamics for the specific class of small super critical L2 mass initial data. We extend these results here to a wider class of finite time blow up solutions corresponding to the ones which accumulate at one point exactly the ground state mass. In particular, we prove the existence and stability of large L2 mass log-log type solutions which are believed to describe the generic blow up dynamics.


2009 ◽  
Vol 51 (3) ◽  
pp. 499-511 ◽  
Author(s):  
LI MA ◽  
XIANFA SONG ◽  
LIN ZHAO

AbstractThe non-linear Schrödinger systems arise from many important physical branches. In this paper, employing the ‘I-method’, we prove the global-in-time well-posedness for a coupled non-linear Schrödinger system in Hs(n) when n = 2, s > 4/7 and n = 3, s > 5/6, respectively, which extends the results of J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao (Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math Res. Lett. 9, 2002, 659–682) to the system.


Sign in / Sign up

Export Citation Format

Share Document