linear potential
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 130)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Facundo Villavicencio ◽  
Jorge Mario Ferreyra ◽  
German Bridoux ◽  
Manuel Villafuerte

Abstract We propose a simple but unexplored model for the semiconductor band bending with the aim to obtain a relatively simple expression to calculate the energy spectrum for the confined levels and the analytical expressions for wave-functions. This model consists of a linear potential but it is bounded or trimmed in energy unlike the well known wedge potential model. We present exact solutions for this potential in the frame of the effective mass approximation and they are valid for electron or hole confinement potential. This model provides a more adequate physical scenario than the wedge potential since it takes into account the charge balance involved in the band bending potential. These results allow to treat confined potential problems as in the case of a two-dimensional electron gas (2DEG) in a simplified way. We discuss the application of this approximation to the recombination time of electrons an holes and for the Franz-Keldysh effect.


2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
M. Abu-shady ◽  
N. H. Gerish ◽  
M. M. A. Ahmed

The exotic particles such as the pentaquarks are to strengthen understanding of important interactions and the principle of QCD in which pentaquarks contain two heavy- valence quarks. The structure of two bodies including an antiquark and two-diquark is introduced. A new potential for quark interaction is suggested which includes the logarithm potential, the linear potential, and the spin-spin interaction. The suggested potential is included in the framework of spinless of Bethe-Salpeter equation. A comparison with other works is presented which provides a good description of pentaquarks.


Author(s):  
Leonard Domnisoru

Usual specially designed barges are involved in the off-shore operations that have to be evaluated by several criteria, inclusive of the seakeeping capabilities. The paper includes a comparative seakeeping study of two constructive versions for a large off-shore barge with a length of 189 m, having different breadths 40 m and 50 m. Both constructive versions are on the full cargo 23000 t condition. The seakeeping analyses are done with our own software DYN-OSC, developed by linear potential Lewis’s strip theory. The seakeeping studies are done in oblique irregular waves with a maximum height of 12 m and for the off-shore barge maximum operation speed of 7 knots. The results of this comparative study reveal the differences in the seakeeping operation capabilities for the two off-shore barge constructive versions.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7222
Author(s):  
Janusz Andrzejewski ◽  
Mieczyslaw Antoni Pietrzyk ◽  
Dawid Jarosz ◽  
Adrian Kozanecki

In this paper, the photoluminescence spectra of excitons in ZnO/ZnMgO/ZnO double asymmetric quantum wells grown on a–plane Al2O3 substrates with internal electric-field bands structures were studied. In these structures, the electron and the hole in the exciton are spatially separated between neighbouring quantum wells, by a ZnMgO barrier with different thickness. The existence of an internal electric field generates a linear potential and, as a result, lowers the energy of quantum states in the well. For the wide wells, the electrons are spatially separated from the holes and can create indirect exciton. To help the understanding of the photoluminescence spectra, for single particle states the 8 k·p for wurtzite structure is employed. Using these states, the exciton in the self-consistent model with 2D hydrogenic 1s–like wave function is calculated.


2021 ◽  
Vol 9 (12) ◽  
pp. 1317
Author(s):  
Huan Wang ◽  
Erzheng Fang ◽  
Mingze Wu ◽  
Lianjin Hong ◽  
Zongru Li

When an underwater target moves in viscous fluid, it may cause the periodic movement of the surrounding fluid and generate ultra-low-frequency (ULF) gravity waves. The initial domain of the gravitational surface wave propagating above the moving target is named circular wave. This article studies the ULF circular wave generated by underwater oscillating sphere, which will provide basis for underwater long-range target detection. Firstly, the circular wave caused by the sphere oscillation in a finite deep fluid is studied based on the theory of linear potential flow. Meanwhile, the multipole expansion theory is established to solve the circular wave field. Secondly, the interface wave generated by the target oscillation in a two-layer fluid are numerically analyzed by comparison with the free surface fluctuation of a single-layer fluid. The results show that the amplitude of the internal interface displacement (AIID) is smaller than that of the free surface (AFSD). When the sphere is in the lower layer, the layering effect of the fluid has significant influences on the AFSD. Finally, the results of the pool experiment verified that the wave generated by the oscillating sphere is the surface gravity wave. Furthermore, the change trend of the test result is consistent with the simulation result.


Author(s):  
C. P. Cummins ◽  
G. T. Scarlett ◽  
C. Windt

AbstractThe Mocean wave energy converter consists of two sections, hinged at a central location, allowing the device to convert energy from the relative pitching motion of the sections. In a simplified form, the scattering problem for the device can be modelled as monochromatic waves incident upon a thin, inclined, surface-piercing plate of length $$L'$$ L ′ in a finite depth $$d'$$ d ′ of water. In this paper, the flow past such a plate is solved using a Boundary Element Method (BEM) and Computational Fluid Dynamics (CFD). While the BEM solution is based on linear potential flow theory, CFD directly solves the Navier–Stokes equations. Problems of this type are known to exhibit near-perfect reflection (indicated by a reflection coefficient $$|R|\approx 1$$ | R | ≈ 1 ) of waves at specific wavenumbers $$k'$$ k ′ . In this paper, we show that the resonant motion of the fluid induces large hydrodynamic forces on the plate. Furthermore, we argue that this low-frequency resonance resembles Helmholtz resonance, and that Mocean’s device being able to tune to these low frequencies does not act like an attenuator. For the case where the water is deep ($$d'>\lambda '/2$$ d ′ > λ ′ / 2 , where $$\lambda '=2\pi /k'$$ λ ′ = 2 π / k ′ ), we find excellent agreement between our simulations and previous semi-analytical studies on the value of the resonant wave periods in deep water. We also find excellent agreement between the excitation forces on the plate computed using the BEM model, analytical results, and CFD for large inclination angles ($$\alpha > 45^\circ $$ α > 45 ∘ ). For $$\alpha \le 15^\circ $$ α ≤ 15 ∘ , both methods show the same trend, but the CFD predicts a significantly smaller peak in the excitation force compared with BEM, which we attribute to non-linear effects such as the non-linear Froude–Krylov force


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1469
Author(s):  
Z. Khani ◽  
S. V. Mousavi ◽  
S. Miret-Artés

In this work, momentum-space decoherence using minimum and nonminimum-uncertainty-product (stretched) Gaussian wave packets in the framework of Caldeira–Leggett formalism and under the presence of a linear potential is studied. As a dimensionless measure of decoherence, purity, a quantity appearing in the definition of the linear entropy, is studied taking into account the role of the stretching parameter. Special emphasis is on the open dynamics of the well-known cat states and bosons and fermions compared to distinguishable particles. For the cat state, while the stretching parameter speeds up the decoherence, the external linear potential strength does not affect the decoherence time; only the interference pattern is shifted. Furthermore, the interference pattern is not observed for minimum-uncertainty-product-Gaussian wave packets in the momentum space. Concerning bosons and fermions, the question we have addressed is how the symmetry of the wave functions of indistinguishable particles is manifested in the decoherence process, which is understood here as the loss of being indistinguishable due to the gradual emergence of classical statistics with time. We have observed that the initial bunching and anti-bunching character of bosons and fermions, respectively, in the momentum space are not preserved as a function of the environmental parameters, temperature, and damping constant. However, fermionic distributions are slightly broader than the distinguishable ones and these similar to the bosonic distributions. This general behavior could be interpreted as a residual reminder of the symmetry of the wave functions in the momentum space for this open dynamics.


Sign in / Sign up

Export Citation Format

Share Document