scholarly journals Group rings satisfying a polynomial identity. III

1972 ◽  
Vol 31 (1) ◽  
pp. 87-87 ◽  
Author(s):  
D. S. Passman
1972 ◽  
Vol 20 (1) ◽  
pp. 103-117 ◽  
Author(s):  
D.S Passman

Author(s):  
Kenneth A. Brown

AbstractThe structure of modules over polycyclic group rings RG is investigated using the idea of a link P ⇝ Q between prime ideals of RG. The representation theory of RG splits into two parts – the part we discuss is determined by the representation theory of certain Noetherian polynomial identity factor rings of subrings of RG.


2019 ◽  
Vol 2019 (3) ◽  
pp. 33-39
Author(s):  
P.V. Danchev
Keyword(s):  

1992 ◽  
Vol 45 (3) ◽  
pp. 503-506 ◽  
Author(s):  
R.K. Sharma ◽  
Vikas Bist

Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.


1983 ◽  
Vol 11 (22) ◽  
pp. 2519-2525 ◽  
Author(s):  
Chander Kanta Gupta
Keyword(s):  

2015 ◽  
Vol 07 (02) ◽  
pp. 1550019
Author(s):  
Jinyu Huang

A maximum linear matroid parity set is called a basic matroid parity set, if its size is the rank of the matroid. We show that determining the existence of a common base (basic matroid parity set) for linear matroid intersection (linear matroid parity) is in NC2, provided that there are polynomial number of common bases (basic matroid parity sets). For graphic matroids, we show that finding a common base for matroid intersection is in NC2, if the number of common bases is polynomial bounded. To our knowledge, these algorithms are the first deterministic NC algorithms for matroid intersection and matroid parity. We also give a new RNC2 algorithm that finds a common base for graphic matroid intersection. We prove that if there is a black-box NC algorithm for Polynomial Identity Testing (PIT), then there is an NC algorithm to determine the existence of a common base (basic matroid parity set) for linear matroid intersection (linear matroid parity).


2016 ◽  
Vol 15 (08) ◽  
pp. 1650150 ◽  
Author(s):  
Hongdi Huang ◽  
Yuanlin Li ◽  
Gaohua Tang

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In this paper, we consider the group algebras of the dihedral groups [Formula: see text], and the generalized quaternion groups [Formula: see text] with standard involution ∗. For the non-semisimple group algebra case, we characterize the ∗-cleanness of [Formula: see text] with a prime [Formula: see text], and [Formula: see text] with [Formula: see text], where [Formula: see text] is a commutative local ring. For the semisimple group algebra case, we investigate when [Formula: see text] is ∗-clean, where [Formula: see text] is the field of rational numbers [Formula: see text] or a finite field [Formula: see text] and [Formula: see text] or [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document