scholarly journals Properties of the solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension

1974 ◽  
Vol 43 (2) ◽  
pp. 373-373 ◽  
Author(s):  
Robert T. Glassey ◽  
John M. Chadam
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hyungjin Huh ◽  
Jihyun Yim

We prove global existence of solution to space-time monopole equations in one space dimension under the spatial gauge condition A1=0 and the temporal gauge condition A0=0.


2002 ◽  
Vol 54 (5) ◽  
pp. 1065-1085 ◽  
Author(s):  
Nakao Hayashi ◽  
Pavel I. Naumkin

AbstractWe consider the Cauchy problem for the cubic nonlinear Schrödinger equation in one space dimensionCubic type nonlinearities in one space dimension heuristically appear to be critical for large time. We study the global existence and large time asymptotic behavior of solutions to the Cauchy problem (1). We prove that if the initial data are small and such that for some n ∈ Z, and , then the solution has an additional logarithmic timedecay in the short range region . In the far region the asymptotics have a quasilinear character.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kiyeon Lee

<p style='text-indent:20px;'>In this paper, we consider the Cauchy problem of <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula>-dimension Hartree type Dirac equation with nonlinearity <inline-formula><tex-math id="M2">\begin{document}$ c|x|^{-\gamma} * \langle \psi, \beta \psi\rangle $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ c\in \mathbb R\setminus\{0\} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 0 &lt; \gamma &lt; d $\end{document}</tex-math></inline-formula>(<inline-formula><tex-math id="M5">\begin{document}$ d = 2,3 $\end{document}</tex-math></inline-formula>). Our aim is to show the local well-posedness in <inline-formula><tex-math id="M6">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M7">\begin{document}$ s &gt; \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula> with mass-supercritical cases(<inline-formula><tex-math id="M8">\begin{document}$ 1 &lt; \gamma&lt;d $\end{document}</tex-math></inline-formula>) and mass-critical case(<inline-formula><tex-math id="M9">\begin{document}$ {\gamma} = 1 $\end{document}</tex-math></inline-formula>) via bilinear estimates and angular decomposition for which we use the null structure of nonlinear term effectively. We also provide the flow of Dirac equations cannot be <inline-formula><tex-math id="M10">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula> at the origin for <inline-formula><tex-math id="M11">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M12">\begin{document}$ s &lt; \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula>.</p>


2015 ◽  
Vol 12 (04) ◽  
pp. 745-762 ◽  
Author(s):  
Donghyun Kim

We study the Cauchy problem for systems of cubic nonlinear Klein–Gordon equations with different masses in one space dimension. Under a suitable structural condition on the nonlinearity, we will show that the solution exists globally and decays of the rate [Formula: see text] in [Formula: see text], [Formula: see text] as [Formula: see text] tends to infinity even in the case of mass resonance, if the Cauchy data are sufficiently small, smooth and compactly supported.


Sign in / Sign up

Export Citation Format

Share Document