compactly supported
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 104)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Vol 62 ◽  
pp. C98-C111
Author(s):  
Neil Dizon ◽  
Jeffrey Hogan ◽  
Scott Lindstrom

We introduce a two-stage global-then-local search method for solving feasibility problems. The approach pairs the advantageous global tendency of the Douglas–Rachford method to find a basin of attraction for a fixed point, together with the local tendency of the circumcentered reflections method to perform faster within such a basin. We experimentally demonstrate the success of the method for solving nonconvex problems in the context of wavelet construction formulated as a feasibility problem.  References F. J. Aragón Artacho, R. Campoy, and M. K. Tam. The Douglas–Rachford algorithm for convex and nonconvex feasibility problems. Math. Meth. Oper. Res. 91 (2020), pp. 201–240. doi: 10.1007/s00186-019-00691-9 R. Behling, J. Y. Bello Cruz, and L.-R. Santos. Circumcentering the Douglas–Rachford method. Numer. Algor. 78.3 (2018), pp. 759–776. doi: 10.1007/s11075-017-0399-5 R. Behling, J. Y. Bello-Cruz, and L.-R. Santos. On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46.2 (2018), pp. 159–162. issn: 0167-6377. doi: 10.1016/j.orl.2017.11.018 J. M. Borwein, S. B. Lindstrom, B. Sims, A. Schneider, and M. P. Skerritt. Dynamics of the Douglas–Rachford method for ellipses and p-spheres. Set-Val. Var. Anal. 26 (2018), pp. 385–403. doi: 10.1007/s11228-017-0457-0 J. M. Borwein and B. Sims. The Douglas–Rachford algorithm in the absence of convexity. Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011, pp. 93–109. doi: 10.1007/978-1-4419-9569-8_6 I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41.7 (1988), pp. 909–996. doi: 10.1002/cpa.3160410705 N. D. Dizon, J. A. Hogan, and J. D. Lakey. Optimization in the construction of nearly cardinal and nearly symmetric wavelets. In: 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030889 N. D. Dizon, J. A. Hogan, and S. B. Lindstrom. Circumcentering reflection methods for nonconvex feasibility problems. arXiv preprint arXiv:1910.04384 (2019). url: https://arxiv.org/abs/1910.04384 D. J. Franklin. Projection algorithms for non-separable wavelets and Clifford Fourier analysis. PhD thesis. University of Newcastle, 2018. doi: 1959.13/1395028. D. J. Franklin, J. A. Hogan, and M. K. Tam. A Douglas–Rachford construction of non-separable continuous compactly supported multidimensional wavelets. arXiv preprint arXiv:2006.03302 (2020). url: https://arxiv.org/abs/2006.03302 D. J. Franklin, J. A. Hogan, and M. K. Tam. Higher-dimensional wavelets and the Douglas–Rachford algorithm. 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030823 B. P. Lamichhane, S. B. Lindstrom, and B. Sims. Application of projection algorithms to differential equations: Boundary value problems. ANZIAM J. 61.1 (2019), pp. 23–46. doi: 10.1017/S1446181118000391 S. B. Lindstrom and B. Sims. Survey: Sixty years of Douglas–Rachford. J. Aust. Math. Soc. 110 (2020), 1–38. doi: 10.1017/S1446788719000570 S. B. Lindstrom, B. Sims, and M. P. Skerritt. Computing intersections of implicitly specified plane curves. J. Nonlin. Convex Anal. 18.3 (2017), pp. 347–359. url: http://www.yokohamapublishers.jp/online2/jncav18-3 S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer. Math. Soc. 315.1 (1989), pp. 69–87. doi: 10.1090/S0002-9947-1989-1008470-5 Y. Meyer. Wavelets and operators. Cambridge University Press, 1993. doi: 10.1017/CBO9780511623820 G. Pierra. Decomposition through formalization in a product space. Math. Program. 28 (1984), pp. 96–115. doi: 10.1007/BF02612715


Author(s):  
Bartłomiej Dyda ◽  
Michał Kijaczko

AbstractWe describe some sufficient conditions, under which smooth and compactly supported functions are or are not dense in the fractional Sobolev space $$W^{s,p}(\Omega )$$ W s , p ( Ω ) for an open, bounded set $$\Omega \subset \mathbb {R}^{d}$$ Ω ⊂ R d . The density property is closely related to the lower and upper Assouad codimension of the boundary of $$\Omega$$ Ω . We also describe explicitly the closure of $$C_{c}^{\infty }(\Omega )$$ C c ∞ ( Ω ) in $$W^{s,p}(\Omega )$$ W s , p ( Ω ) under some mild assumptions about the geometry of $$\Omega$$ Ω . Finally, we prove a variant of a fractional order Hardy inequality.


2021 ◽  
Vol 8 (28) ◽  
pp. 336-348
Author(s):  
M. Erdoğan ◽  
Michael Goldberg ◽  
William Green

We prove Strichartz estimates for the Schrödinger equation in R n \mathbb {R}^n , n ≥ 3 n\geq 3 , with a Hamiltonian H = − Δ + μ H = -\Delta + \mu . The perturbation μ \mu is a compactly supported measure in R n \mathbb {R}^n with dimension α > n − ( 1 + 1 n − 1 ) \alpha > n-(1+\frac {1}{n-1}) . The main intermediate step is a local decay estimate in L 2 ( μ ) L^2(\mu ) for both the free and perturbed Schrödinger evolution.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2830
Author(s):  
Aigerim Kalybay ◽  
Ryskul Oinarov ◽  
Yaudat Sultanaev

In the paper, we establish the oscillatory and spectral properties of a class of fourth-order differential operators in dependence on integral behavior of its coefficients at zero and infinity. In order to obtain these results, we investigate a certain weighted second-order differential inequality of independent interest.


Author(s):  
Daniel Potts ◽  
Manfred Tasche

AbstractIn this paper, we study the error behavior of the nonequispaced fast Fourier transform (NFFT). This approximate algorithm is mainly based on the convenient choice of a compactly supported window function. So far, various window functions have been used and new window functions have recently been proposed. We present novel error estimates for NFFT with compactly supported, continuous window functions and derive rules for convenient choice from the parameters involved in NFFT. The error constant of a window function depends mainly on the oversampling factor and the truncation parameter.


Sign in / Sign up

Export Citation Format

Share Document