scholarly journals Linear-quadratic optimal control problems for mean-field stochastic differential equations — time-consistent solutions

2015 ◽  
Vol 369 (8) ◽  
pp. 5467-5523 ◽  
Author(s):  
Jiongmin Yong
2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hui Min ◽  
Ying Peng ◽  
Yongli Qin

We discuss a new type of fully coupled forward-backward stochastic differential equations (FBSDEs) whose coefficients depend on the states of the solution processes as well as their expected values, and we call them fully coupled mean-field forward-backward stochastic differential equations (mean-field FBSDEs). We first prove the existence and the uniqueness theorem of such mean-field FBSDEs under some certain monotonicity conditions and show the continuity property of the solutions with respect to the parameters. Then we discuss the stochastic optimal control problems of mean-field FBSDEs. The stochastic maximum principles are derived and the related mean-field linear quadratic optimal control problems are also discussed.


2019 ◽  
Vol 25 ◽  
pp. 17 ◽  
Author(s):  
Qingmeng Wei ◽  
Jiongmin Yong ◽  
Zhiyong Yu

An optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic (LQ, for short) optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients, together with a convexity condition for the cost functional. Under proper conditions, the well-posedness of such an FBSDE, which leads to the existence of an open-loop optimal control, is established. Finally, as applications of our main results, a general mean-field LQ control problem and a concrete mean-variance portfolio selection problem in the open-loop case are solved.


Sign in / Sign up

Export Citation Format

Share Document