scholarly journals A novel method for accurate one-dimensional protein structure prediction based on fragment matching

2009 ◽  
Vol 26 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Tuping Zhou ◽  
Nanjiang Shu ◽  
Sven Hovmöller
2017 ◽  
Author(s):  
Yujuan Gao ◽  
Sheng Wang ◽  
Minghua Deng ◽  
Jinbo Xu

AbstractBackgroundProtein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging.MethodIn this study, we present a novel method to predict realvalued angles by combining clustering and deep learning. That is, we first generate certain clusters of angles (each assigned a label) and then apply a deep residual neural network to predict the label posterior probability. Finally, we output real-valued prediction by a mixture of the clusters with their predicted probabilities. At the same time, we also estimate the bound of the prediction errors at each residue from the predicted label probabilities.ResultIn this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds.ConclusionsOur study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


2014 ◽  
Vol 3 (5) ◽  
Author(s):  
S. Reiisi ◽  
M. Hashemzade-chaleshtori ◽  
S. Reisi ◽  
H. Shahi ◽  
S. Parchami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document