Decreased Beta-adrenergic Agonist Affinity and Adenylate Cyclase Activity in Senescent Rat Lung

1983 ◽  
Vol 38 (2) ◽  
pp. 143-147 ◽  
Author(s):  
P. J. Scarpace ◽  
I. B. Abrass
1985 ◽  
Vol 248 (6) ◽  
pp. E712-E718 ◽  
Author(s):  
M. S. Katz ◽  
S. R. Boland ◽  
S. J. Schmidt

beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-[125I]iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.


1988 ◽  
Vol 255 (6) ◽  
pp. H1429-H1433 ◽  
Author(s):  
R. J. Schiebinger

We have previously reported that methacholine inhibits norepinephrine-stimulated immunoreactive atrial natriuretic peptide (ANP-IR) secretion by 65% in vitro. In the present study, we examined the mechanism by which methacholine inhibits norepinephrine-stimulated secretion using isolated, paced rat left atria superfused in vitro. Norepinephrine has beta- and alpha-adrenergic properties, both of which stimulate ANP secretion. Thus we separately examined the effect of 10 microM methacholine on ANP-IR secretion stimulated by the beta-adrenergic agonist isoproterenol (0.1 microM) and by the alpha-adrenergic agonist phenylephrine (10 microM). Methacholine lowered isoproterenol-stimulated ANP-IR secretion to base line but did not inhibit phenylephrine-stimulated ANP-IR secretion. Atria were superfused with 0.5 mM dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) to determine whether inhibition of isoproterenol-stimulated secretion by methacholine occurred by a reduction in adenylate cyclase activity or at a point distal to cAMP. Methacholine inhibited dibutyryl cAMP-stimulated ANP-IR secretion by 50%. This inhibition could not be reversed by 20 microM isobutylmethylxanthine. We conclude that 1) methacholine completely blocks isoproterenol-stimulated ANP-IR secretion; 2) inhibition appears to be primarily due to a decrease in adenylate cyclase activity; however, inhibition occurs at a point(s) distal to cAMP production; 3) methacholine does not inhibit phenylephrine-stimulated ANP-IR secretion; and 4) inhibition by methacholine of norepinephrine-stimulated ANP-IR secretion reflects a block in beta-adrenergic activity.


1987 ◽  
Vol 252 (6) ◽  
pp. E783-E789
Author(s):  
J. D. Bell ◽  
L. L. Brunton

In S49 lymphoma cells, 12-O-tetradecanoyl phorbol-13-acetate (TPA) enhances adenylate cyclase activity and doubles cAMP accumulation in response to beta-adrenergic stimulation at 37 degrees C, putatively via the action of protein kinase C. At 27 degrees C, TPA has the opposite effect, inhibiting cAMP production in response to isoproterenol by approximately 25%. TPA also inhibits the response to prostaglandin E1 (PGE1), another stimulant of hormone-sensitive adenylate cyclase in these cells, by 30% at 37 degrees C and almost 50% at 27 degrees C. In contrast, TPA enhances responses to forskolin and cholera toxin at both 27 and 37 degrees C. In membranes from cells treated with TPA, PGE1-stimulated adenylate cyclase activity is inhibited by 50%, whereas the catalytic activity stimulated by NaF or forskolin is enhanced. TPA reduces the potency of both PGE1 and isoproterenol for cAMP generation by 50%. TPA causes a similar decrease in beta-adrenergic agonist affinity with no reduction in the density of either antagonist or agonist binding sites in wild type cells and in cells lacking the alpha-subunit of the stimulatory transducer protein (Gs) (cyc-) or lacking functional receptor Gs coupling (UNC). Therefore, TPA has at least three functionally distinct effects on hormone-sensitive adenylate cyclase in S49 cells: a 50% reduction in agonist affinity, attenuation of receptor-transducer coupling, and enhancement of GTP-dependent catalytic activity. We conclude that multiple and opposing effects of TPA on hormone-sensitive adenylate cyclase occur simultaneously within the same cell, affecting the responses to several agonists differently.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
L.S. Cutler

Many studies previously have shown that the B-adrenergic agonist isoproterenol and the a-adrenergic agonist norepinephrine will stimulate secretion by the adult rat submandibular (SMG) and parotid glands. Recent data from several laboratories indicates that adrenergic agonists bind to specific receptors on the secretory cell surface and stimulate membrane associated adenylate cyclase activity which generates cyclic AMP. The production of cyclic AMP apparently initiates a cascade of events which culminates in exocytosis. During recent studies in our laboratory it was observed that the adenylate cyclase activity in plasma membrane fractions derived from the prenatal and early neonatal rat submandibular gland was retractile to stimulation by isoproterenol but was stimulated by norepinephrine. In addition, in vitro secretion studies indicated that these prenatal and neonatal glands would not secrete peroxidase in response to isoproterenol but would secrete in response to norepinephrine. In contrast to these in vitro observations, it has been shown that the injection of isoproterenol into the living newborn rat results in secretion of peroxidase by the SMG (1).


1983 ◽  
Vol 210 (2) ◽  
pp. 559-566 ◽  
Author(s):  
M S Setchenska ◽  
H R V Arnstein

After fractionation of rabbit bone marrow into dividing (early) and non-dividing (late) erythroid cells, the adenylate cyclase activity of membrane ghosts was assayed in the presence of guanine nucleotides ((GTP and its analogue p[NH]ppG (guanosine 5′-[beta, gamma-imido]triphosphate))), the beta-adrenergic agonist L-isoprenaline (L-isoproterenol) and the antagonist L-propranolol. Both GTP and p[NH]ppG increased the adenylate cyclase activity of early and late erythroblasts, whereas the stimulating effect of the beta-adrenergic drug L-isoprenaline was limited to the immature dividing bone-marrow cells. The effect of L-isoprenaline was completely inhibited by the antagonist L-propranolol, confirming that the response was due to stimulation of beta-adrenergic receptors on the plasma membrane. The lack of response of non-dividing erythroblasts to beta-adrenergic stimuli is not due to loss of beta-receptors, since both dividing and non-dividing cells bind the selective ligand [125I]iodohydroxybenzylpindolol with almost equal affinities, the apparent dissociation constants, Kd, being 0.91 × 10(-8)M and 1.0 × 10(-8) M respectively. The number of beta-adrenergic receptors per cell was 2-fold higher in the dividing cells. No significant change in binding affinity for GTP and p[NH]ppG during erythroblast development was observed: the dissociation constants of both guanine nucleotides were almost identical with early and late erythroblast membrane preparations [2-3 (X 10(-7) M]. With dividing cells, however, in the presence of L-isoprenaline the dissociation constants of GTP and p[NH]ppG were lower (6 × 10(-8) M). The dose-response curves for isoprenaline competition in binding of [125I]iodohydroxybenzylpindolol by dividing cells showed that the EC50 (effective concentration for half maximum activity) value for isoprenaline was higher in the presence of p[NH]ppG. With non-dividing cells the EC50 value for isoprenaline was equal in the presence and in the absence of p[NH]ppG and similar to that observed with dividing-cell membranes in the presence of the nucleotide. Thus differentiation of rabbit bone-marrow erythroid cells seems to be accompanied by uncoupling of the beta-adrenergic receptors from the adenylate cyclase catalytic protein as well as by a decrease in the number of receptors per cell, but not by changes in the catecholamine and guanine-nucleotide-binding affinities.


Sign in / Sign up

Export Citation Format

Share Document