Palaeoslab and plume signatures in the mantle transition zone beneath Eastern Himalaya and adjoining regions

2020 ◽  
Vol 221 (1) ◽  
pp. 468-477
Author(s):  
Dipankar Saikia ◽  
M Ravi Kumar ◽  
Arun Singh

SUMMARY A comprehensive data set of 73 876 high quality receiver functions computed using waveforms recorded by 327 broad-band seismic stations is used to investigate the mantle transition zone (MTZ) structure beneath the eastern Himalaya, southern Tibet, Assam valley and the previously unexplored Burmese arc and Bengal basin regions. A highly variable and perturbed mantle transition zone, with depressed 410 and 660 km discontinuities, is observed beneath the Bengal basin and to the east of the eastern Himalayan syntaxis. The 410 is elevated by ∼10 km along the Himalayan collision front, while it deviates in the range of ±5 km beneath most parts of Tibet and the Himalayan Foredeep. In northern Tibet and along the Red River Fault, delayed conversions from the 410 reveal a deepening of more than 10 km. The 410 and 660 km discontinuities are uplifted by nearly 10 km beneath the Arunachal Himalaya, due to the presence of a subducting Indian lithosphere, as evident in the regional tomographic images. We observe a thick (>20 km) transition zone beneath the Burmese Arc and close to the Tengchong volcano. An uplifted 410 together with a depressed 660 km discontinuity requires presence of lithospheric slabs within the MTZ. Delayed P-to-s conversions from the 410 and 660 km discontinuities in the proximity of the Jinsha suture zone seem to be consistent with the earlier results that invoke flow of a hot Tibetan asthenosphere into the mantle transition zone, as an explanation. Interestingly, results from the Bengal basin reveal a deepening (∼10 km) of both the 410 and 660 km discontinuities. Similar results from other plume affected regions prompt us to interpret this as a signature of the Kergulean plume.

Author(s):  
Lev Vinnik ◽  
Yangfan Deng ◽  
Grigoriy Kosarev ◽  
Sergey Oreshin ◽  
Zhou Zhang ◽  
...  

Summary Sharpness of the 410-km boundary is of interest because it is sensitive to water content in the transition zone. We evaluate the width of the 410-km discontinuity with a new seismic method. Our estimates are inferred from the amplitude ratio of the P2p410s and P410s seismic phases that are detected in P-wave receiver functions. We applied this method to seismic recordings from arrays of broad-band stations deployed in central Fennoscandia, southern Africa and southern China. The obtained estimates of width of the 410-km discontinuity range from 10 to 22 km and always exceed the width of 7 km which is expected for anhydrous conditions. The enlarged width may be interpreted in terms of hydrous conditions, but we have found only one region (the eastern Yangtze Craton in China) where the broad 410-km discontinuity, as expected, is accompanied by a broad transition zone. Water in the transition zone may be a kind of a global phenomenon, but evidence of the enlarged width of the transition zone may be missing in most of our data because the reference seismic model is affected by water, as well.


2016 ◽  
Vol 675 ◽  
pp. 159-167 ◽  
Author(s):  
Ruiqing Zhang ◽  
Zhanyong Gao ◽  
Qingju Wu ◽  
Zhenxing Xie ◽  
Guangcheng Zhang

2009 ◽  
Vol 278 (3-4) ◽  
pp. 163-174 ◽  
Author(s):  
Denis Lombardi ◽  
Jochen Braunmiller ◽  
Edi Kissling ◽  
Domenico Giardini

2017 ◽  
Vol 702 ◽  
pp. 61-69 ◽  
Author(s):  
Yaohui Duan ◽  
Xiaobo Tian ◽  
Xiaofeng Liang ◽  
Wei Li ◽  
Chenglong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document