scholarly journals Total velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure

Author(s):  
K Brenner ◽  
R Masson ◽  
E H Quenjel ◽  
J Droniou

Abstract This work proposes a finite volume scheme for two-phase Darcy flow in heterogeneous porous media with different rock types. The fully implicit discretization is based on cell-centered, as well as face-centered degrees of freedom in order to capture accurately the nonlinear transmission conditions at different rock type interfaces. These conditions play a major role in the flow dynamics. The scheme is formulated with natural physical unknowns, and the notion of global pressure is only introduced to analyze its stability and convergence. It combines a two-point flux approximation of the gradient normal fluxes with a Hybrid Upwinding approximation of the transport terms. The convergence of the scheme to a weak solution is established taking into account the discontinuous capillary pressure at different rock type interfaces and the degeneracy of the phase mobilities. Numerical experiments show the additional robustness of the proposed discretization compared with the classical Phase Potential Upwinding approach.

Author(s):  
Clément Cancès ◽  
Flore Nabet

We study a time implicit Finite Volume scheme for degenerate Cahn-Hilliard model proposed in [W. E and P. Palffy-Muhoray. Phys. Rev. E , 55:R3844–R3846, 1997] and studied mathematically by the authors in [C. Canc\`es, D. Matthes, and F. Nabet. Arch. Ration. Mech. Anal. , 233(2):837-866, 2019]. The scheme is shown to preserve the key properties of the continuous model, namely mass conservation, positivity of the concentrations, the decay of the energy and the control of the entropy dissipation rate. This allows to establish the existence of a solution to the nonlinear algebraic system corresponding to the scheme. Further, we show thanks to compactness arguments that the approximate solution converges towards a weak solution of the continuous problems as the discretization parameters tend to 0. Numerical results illustrate the behavior of the numerical model.


Sign in / Sign up

Export Citation Format

Share Document