Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source

2014 ◽  
Vol 35 (3) ◽  
pp. 1167-1198 ◽  
Author(s):  
Andreas C. Aristotelous ◽  
Ohannes A. Karakashian ◽  
Steven M. Wise
2021 ◽  
pp. 110409
Author(s):  
Gerasimos Ntoukas ◽  
Juan Manzanero ◽  
Gonzalo Rubio ◽  
Eusebio Valero ◽  
Esteban Ferrer

2019 ◽  
Vol 57 (1) ◽  
pp. 495-525 ◽  
Author(s):  
Wenbin Chen ◽  
Xiaoming Wang ◽  
Yue Yan ◽  
Zhuying Zhang

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhifeng Weng ◽  
Langyang Huang ◽  
Rong Wu

In this paper, a second-order accurate (in time) energy stable Fourier spectral scheme for the fractional-in-space Cahn-Hilliard (CH) equation is considered. The time is discretized by the implicit backward differentiation formula (BDF), along with a linear stabilized term which represents a second-order Douglas-Dupont-type regularization. The semidiscrete schemes are shown to be energy stable and to be mass conservative. Then we further use Fourier-spectral methods to discretize the space. Some numerical examples are included to testify the effectiveness of our proposed method. In addition, it shows that the fractional order controls the thickness and the lifetime of the interface, which is typically diffusive in integer order case.


2014 ◽  
Vol 31 (7) ◽  
pp. 1151-1168 ◽  
Author(s):  
A.A. Aderogba ◽  
M. Chapwanya ◽  
J.K. Djoko

Purpose – For a partial differential equation with a fourth-order derivative such as the Cahn-Hilliard equation, it is always a challenge to design numerical schemes that can handle the restrictive time step introduced by this higher order term. The purpose of this paper is to employ a fractional splitting method to isolate the convective, the nonlinear second-order and the fourth-order differential terms. Design/methodology/approach – The full equation is then solved by consistent schemes for each differential term independently. In addition to validating the second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Findings – The scheme is second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Originality/value – The authors believe that this is the first time the equation is handled numerically using the fractional step method. Apart from the fact that the fractional step method substantially reduces computational time, it has the advantage of simplifying a complex process efficiently. This method permits the treatment of each segment of the original equation separately and piece them together, in a way that will be explained shortly, without destroying the properties of the equation.


Sign in / Sign up

Export Citation Format

Share Document