scholarly journals On a fractional step-splitting scheme for the Cahn-Hilliard equation

2014 ◽  
Vol 31 (7) ◽  
pp. 1151-1168 ◽  
Author(s):  
A.A. Aderogba ◽  
M. Chapwanya ◽  
J.K. Djoko

Purpose – For a partial differential equation with a fourth-order derivative such as the Cahn-Hilliard equation, it is always a challenge to design numerical schemes that can handle the restrictive time step introduced by this higher order term. The purpose of this paper is to employ a fractional splitting method to isolate the convective, the nonlinear second-order and the fourth-order differential terms. Design/methodology/approach – The full equation is then solved by consistent schemes for each differential term independently. In addition to validating the second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Findings – The scheme is second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Originality/value – The authors believe that this is the first time the equation is handled numerically using the fractional step method. Apart from the fact that the fractional step method substantially reduces computational time, it has the advantage of simplifying a complex process efficiently. This method permits the treatment of each segment of the original equation separately and piece them together, in a way that will be explained shortly, without destroying the properties of the equation.

Author(s):  
Rhodri LT Bevan ◽  
Etienne Boileau ◽  
Raoul van Loon ◽  
R.W. Lewis ◽  
P Nithiarasu

Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared. Design/methodology/approach – This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split. Findings – In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations. Originality/value – A comprehensive comparison between three versions of the CBS method is provided for the first time.


Author(s):  
Seunggyu Lee

AbstractWe propose a fourth-order spatial and second-order temporal accurate and unconditionally stable compact finite-difference scheme for the Cahn–Hilliard equation. The proposed scheme has a higher-order accuracy in space than conventional central difference schemes even though both methods use a three-point stencil. Its compactness may be useful when applying the scheme to numerical implementation. In a temporal discretization, the secant-type algorithm, which is known as the second-order accurate scheme, is applied. Furthermore, the unique solvability regardless of the temporal and spatial step size, unconditionally gradient stability, and discrete mass conservation are proven. It guarantees that large temporal and spatial step sizes could be used with the high-order accuracy and the original properties of the CH equation. Then, numerical results are presented to confirm the efficiency and accuracy of the proposed scheme. The efficiency of the proposed scheme is better than other low order accurate stable schemes.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 897-915 ◽  
Author(s):  
Masao Shimada ◽  
David Tae ◽  
Tao Xue ◽  
Rohit Deokar ◽  
K K Tamma

Purpose – The purpose of this paper is to present new implementation aspects of unified explicit time integration algorithms, called the explicit GS4-II family of algorithms, of a second-order time accuracy in all the unknowns (e.g. positions, velocities, and accelerations) with particular attention to the moving-particle simulation (MPS) method for solving the incompressible fluids with free surfaces. Design/methodology/approach – In the present paper, the explicit GS4-II family of algorithms is implemented in the MPS method in the following two different approaches: a direct explicit formulation with the use of the weak incompressibility equation involving the (modified) speed of sound; and a predictor-corrector explicit formulation. The first approach basically follows the concept of the explicit MPS method, presented in the literature, and the latter approach employs a similar concept used in, for example, a fractional-step method in computational fluid dynamics. Findings – Illustrative numerical examples demonstrate that any scheme within the proposed algorithmic framework captures the physics with the necessary second-order time accuracy and stability. Originality/value – The new algorithmic framework extended with the GS4-II family encompasses a multitude of pastand new schemes and offers a general purpose and unified implementation.


2007 ◽  
Vol 46 (3) ◽  
pp. 388-395 ◽  
Author(s):  
Yohsuke Imai ◽  
Takayuki Aoki ◽  
Magdi Shoucri

Abstract Two explicit schemes for the numerical solution of the shallow-water equations are examined. The directional-splitting fractional-step method permits relatively large time steps without an iterative process by using a treatment based on the characteristics of the governing equations. The interpolated differential operator (IDO) scheme has fourth-order accuracy in time and space by using a Hermite interpolation function covering local domains, and accurate results are obtained with coarse meshes. It is shown that the two schemes are very efficient for hydrostatic meteorological models from the viewpoints of numerical accuracy and central processing unit time, and the fact that they are explicit makes them suitable for computers with parallel architecture.


2018 ◽  
Vol 129 ◽  
pp. 83-103 ◽  
Author(s):  
Tong Zhang ◽  
Yanxia Qian ◽  
JinYun Yuan

2000 ◽  
Author(s):  
J. Rafael Pacheco ◽  
Arturo Pacheco-Vega ◽  
Sigfrido Pacheco-Vega

Abstract A new approach for the solution of time-dependent calculations of buoyancy driven currents is presented. This method employs the idea that density variation can be pursued by using markers distributed in the flow field. The analysis based on the finite difference technique with the non-staggered grid fractional step method is used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. The problems analyzed include two-fluid flow in a tank with sloping bottom and colliding density currents. The numerical experiments performed show that this approach is efficient and robust.


Sign in / Sign up

Export Citation Format

Share Document