scholarly journals Radially Distributed Values and Normal Families

2018 ◽  
Vol 2019 (23) ◽  
pp. 7356-7378
Author(s):  
Walter Bergweiler ◽  
Alexandre Eremenko

Abstract Let L0 and L1 be two distinct rays emanating from the origin and let ${\mathcal{F}}$ be the family of all functions holomorphic in the unit disk ${\mathbb{D}}$ for which all zeros lie on L0 while all 1-points lie on L1. It is shown that ${\mathcal{F}}$ is normal in ${\mathbb{D}}\backslash \{0\}$. The case where L0 is the positive real axis and L1 is the negative real axis is studied in more detail.

2021 ◽  
Vol 13 (2) ◽  
pp. 1-37
Author(s):  
Ivona Bezáková ◽  
Andreas Galanis ◽  
Leslie Ann Goldberg ◽  
Daniel Štefankovič

We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.


1964 ◽  
Vol 14 (2) ◽  
pp. 137-141
Author(s):  
R. Wilson

Let f(z) be represented on its circle of convergence |z| = 1 by the Taylor seriesand suppose that its sole singularity on |z| = 1 is an almost isolated singularity at z = 1. In the neighbourhood of such a singularity f(z) is regular on a sufficiently small disk, centre z = 1, with the outward drawn radius along the positive real axis excised. If also in this neighbourhood |f(z)| e−(1/δ)ρ remains bounded for some finite ρ, where δ is the distance from the excised radius, then the singularity is said to be of finite exponential order.


2019 ◽  
Vol 20 (2) ◽  
pp. 217
Author(s):  
Eliana Contharteze Grigoletto ◽  
Edmundo Capelas Oliveira ◽  
Rubens Figueiredo Camargo

The Mittag-Leffler functions appear in many problems associated with fractional calculus. In this paper, we use the methodology for evaluation of the inverse Laplace transform, proposed by M. N. Berberan-Santos, to show that the three-parameter Mittag-Leffler function has similar integral representations on the positive real axis. Some of the integrals are also presented.


1970 ◽  
Vol 22 (3) ◽  
pp. 486-491 ◽  
Author(s):  
Paul Eenigenburg

Definition 1.1. Let be analytic for |z| < 1. If ƒ is univalent, we say that ƒ belongs to the class S.Definition 1.2. Let ƒ ∈ S, 0 ≦ α < 1. Then ƒ belongs to the class of convex functions of order α, denoted by Kα, provided(1)and if > 0 is given, there exists Z0, |Z0| < 1, such thatLet ƒ ∈ Kα and consider the Jordan curve ϒτ = ƒ(|z| = r), 0 < r < 1. Let s(r, θ) measure the arc length along ϒτ; and let ϕ(r, θ) measure the angle (in the anti-clockwise sense) that the tangent line to ϒτ at ƒ(reiθ) makes with the positive real axis.


Sign in / Sign up

Export Citation Format

Share Document