Applications

Author(s):  
Walter Gautschi

The connection between orthogonal polynomials and quadrature rules has already been elucidated in §1.4. The centerpieces were the Gaussian quadrature rule and its close relatives—the Gauss–Radau and Gauss–Lobatto rules (§1.4.2). There are, however, a number of further extensions of Gauss’s approach to numerical quadrature. Principal among them are Kronrod’s idea of extending an n-point Gauss rule to a (2n + 1)-point rule by inserting n + 1 additional nodes and choosing all weights in such a way as to maximize the degree of exactness (cf. Definition 1.44), and Turán’s extension of the Gauss quadrature rule allowing not only function values, but also derivative values, to appear in the quadrature sum. More recent extensions relate to the concept of accuracy, requiring exactness not only for polynomials of a certain degree, but also for rational functions with prescribed poles. Gauss quadrature can also be adapted to deal with Cauchy principal value integrals, and there are other applications of Gauss’s ideas, for example, in combination with Stieltjes’s procedure or the modified Chebyshev algorithm, to generate polynomials orthogonal on several intervals, or, in comnbination with Lanczos’s algorithm, to estimate matrix functionals. The present section is to discuss these questions in turn, with computational aspects foremost in our mind. We have previously seen in Chapter 2 how Gauss quadrature rules can be effectively employed in the context of computational methods; for example, in computing the absolute and relative condition numbers of moment maps (§2.1.5), or as a means of discretizing measures in the multiple-component discretization method for orthogonal polynomials (§2.2.5) and in Stieltjes-type methods for Sobolev orthogonal polynomials (§2.5.2). It is time now to discuss the actual computation of these, and related, quadrature rules.

Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6893-6902
Author(s):  
Davorka Jandrlic ◽  
Miodrag Spalevic ◽  
Jelena Tomanovic

We estimate the errors of selected cubature formulae constructed by the product of Gauss quadrature rules. The cases of multiple and (hyper-)surface integrals over n-dimensional cube, simplex, sphere and ball are considered. The error estimates are obtained as the absolute value of the difference between cubature formula constructed by the product of Gauss quadrature rules and cubature formula constructed by the product of corresponding Gauss-Kronrod or corresponding generalized averaged Gaussian quadrature rules. Generalized averaged Gaussian quadrature rule ?2l+1 is (2l + 1)-point quadrature formula. It has 2l + 1 nodes and the nodes of the corresponding Gauss rule Gl with l nodes form a subset, similar to the situation for the (2l + 1)-point Gauss-Kronrod rule H2l+1 associated with Gl. The advantages of bG2l+1 are that it exists also when H2l+1 does not, and that the numerical construction of ?2l+1, based on recently proposed effective numerical procedure, is simpler than the construction of H2l+1.


2020 ◽  
Vol 146 (4) ◽  
pp. 699-728
Author(s):  
Patricia Díaz de Alba ◽  
Luisa Fermo ◽  
Giuseppe Rodriguez

AbstractThis paper is concerned with the numerical approximation of Fredholm integral equations of the second kind. A Nyström method based on the anti-Gauss quadrature formula is developed and investigated in terms of stability and convergence in appropriate weighted spaces. The Nyström interpolants corresponding to the Gauss and the anti-Gauss quadrature rules are proved to furnish upper and lower bounds for the solution of the equation, under suitable assumptions which are easily verified for a particular weight function. Hence, an error estimate is available, and the accuracy of the solution can be improved by approximating it by an averaged Nyström interpolant. The effectiveness of the proposed approach is illustrated through different numerical tests.


Sign in / Sign up

Export Citation Format

Share Document